D=|x/5−y/7|+|2z−3x|+|xy+yz−500+zx∣ Tìm min D 14/11/2021 Bởi Aaliyah D=|x/5−y/7|+|2z−3x|+|xy+yz−500+zx∣ Tìm min D
Đáp án: $Min_D=0$ Giải thích các bước giải: Ta có: $|\dfrac{x}{5}-\dfrac{y}{7}|\ge 0,\quad\forall x,y$ $|2z-3x|\ge 0,\quad\forall x,z$ $|xy+yz-500+zx|\ge 0,\quad\forall x,y,z$ $\to D=|\dfrac{x}{5}-\dfrac{y}{7}|+|2z-3x|+|xy+yz-500+zx|\ge 0$ $\to Min_D=0$ Khi đó: $\begin{cases}\dfrac{x}{5}-\dfrac{y}{7}=0\\2z-3x=0\\ xy+yz-500+zx=0\end{cases}$ $\to \begin{cases}\dfrac{x}{5}=\dfrac{y}{7}\\2z=3x\\ xy+yz+zx=500\end{cases}$ $\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\ x\cdot \dfrac75x+\dfrac75x\cdot \dfrac32x+\dfrac32x\cdot x=500\end{cases}$ $\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\5x^2=500\end{cases}$ $\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\x^2=100\end{cases}$ $\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\x=\pm10\end{cases}$ $\to (x,y,z)\in\{(10,14, 6),(-10,-14, -6)\}$ Bình luận
Đáp án:
Giải thích các bước giải:
Ko bít :>
Đáp án: $Min_D=0$
Giải thích các bước giải:
Ta có:
$|\dfrac{x}{5}-\dfrac{y}{7}|\ge 0,\quad\forall x,y$
$|2z-3x|\ge 0,\quad\forall x,z$
$|xy+yz-500+zx|\ge 0,\quad\forall x,y,z$
$\to D=|\dfrac{x}{5}-\dfrac{y}{7}|+|2z-3x|+|xy+yz-500+zx|\ge 0$
$\to Min_D=0$
Khi đó:
$\begin{cases}\dfrac{x}{5}-\dfrac{y}{7}=0\\2z-3x=0\\ xy+yz-500+zx=0\end{cases}$
$\to \begin{cases}\dfrac{x}{5}=\dfrac{y}{7}\\2z=3x\\ xy+yz+zx=500\end{cases}$
$\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\ x\cdot \dfrac75x+\dfrac75x\cdot \dfrac32x+\dfrac32x\cdot x=500\end{cases}$
$\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\5x^2=500\end{cases}$
$\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\x^2=100\end{cases}$
$\to \begin{cases}y=\dfrac75x\\z=\dfrac32x\\x=\pm10\end{cases}$
$\to (x,y,z)\in\{(10,14, 6),(-10,-14, -6)\}$