d) ( 6x +5) chia hết cho ( 3x-1) e) ( 16x-9) chia hết cho ( 8x+7) 10/11/2021 Bởi Rylee d) ( 6x +5) chia hết cho ( 3x-1) e) ( 16x-9) chia hết cho ( 8x+7)
$d)Ta\ có : \\\dfrac{6x+5}{3x-1}=\dfrac{6x-2+7}{3x-1}=\dfrac{6x-2}{3x-1}+\dfrac{7}{3x-1}=2+\dfrac{7}{3x-1} \\Để\ 6x+5\vdots 3x-1 \\⇒7\vdots 3x-1 \\⇒3x-1∈Ư(7)=\{±1;±7\} \\+)3x-1=1⇔x=\dfrac{2}{3} \\+)3x-1=-1⇔x=0 \\+)3x-1=7⇔x=\dfrac{8}{3} \\+)3x-1=-7⇔x=-2 \\Vậy\ để\ 6x+5\vdots 3x-1\ thì\ x∈\bigg\{\dfrac{2}{3};0;\dfrac{8}{3};-2\bigg\} \\e)Ta\ có : \\\dfrac{16x-9}{8x+7}=\dfrac{16x+14-23}{8x+7}=\dfrac{16x+14}{8x+7}+\dfrac{-23}{8x+7}=2+\dfrac{-23}{8x+7} \\Để\ 16x-9\vdots 8x+7 \\⇒-23\vdots 8x+7 \\⇒8x+7∈Ư(-23)=\{±1;±23\} \\+)8x+7=1⇔x=\dfrac{-3}{4} \\+)8x+7=-1⇔x=-1 \\+)8x+7=23⇔x=2 \\+)8x+7=-23⇔x=\dfrac{-15}{4} \\Vậy\ để\ 16x-9\vdots 8x+7\ thì\ x∈\bigg\{\dfrac{-3}{4};-1;2;\dfrac{-15}{4}\bigg\}$ Bình luận
Đáp án + Giải thích các bước giải: Ta có : `d,6x+5` `=(6x-2)+7` `=2(3x-1)+7` Vì `2(3x-1)` $\vdots$ `3x-1` Nên để `6x+5` $\vdots$ `3x-1` Thì `7` $\vdots$ `3x-1` `→3x-1∈Ư(7)` `→3x-1∈{±1;±7}` `→3x∈{0;2;-6;8}` `→x∈{0;\frac{2}{3};-2;\frac{8}{3}}` Vậy `x∈{0;\frac{2}{3};-2;\frac{8}{3}}` `———————-` `e,16x-9` `=(16x+14)-23` `=2(8x+7)-23` Vì `2(8x+7)` $\vdots$ `8x+7` Nên để `16x-9` $\vdots$ `8x+7` Thì `23` $\vdots$ `8x+7` `→8x+7∈Ư(23)` `→8x+7∈{±1;±23}` `→8x∈{-8;-6;-30;16}` `→x∈{-1;-\frac{3}{4};-\frac{15}{4};2}` Vậy `x∈{-1;-\frac{3}{4};-\frac{15}{4};2}` Bình luận
$d)Ta\ có : \\\dfrac{6x+5}{3x-1}=\dfrac{6x-2+7}{3x-1}=\dfrac{6x-2}{3x-1}+\dfrac{7}{3x-1}=2+\dfrac{7}{3x-1} \\Để\ 6x+5\vdots 3x-1 \\⇒7\vdots 3x-1 \\⇒3x-1∈Ư(7)=\{±1;±7\} \\+)3x-1=1⇔x=\dfrac{2}{3} \\+)3x-1=-1⇔x=0 \\+)3x-1=7⇔x=\dfrac{8}{3} \\+)3x-1=-7⇔x=-2 \\Vậy\ để\ 6x+5\vdots 3x-1\ thì\ x∈\bigg\{\dfrac{2}{3};0;\dfrac{8}{3};-2\bigg\} \\e)Ta\ có : \\\dfrac{16x-9}{8x+7}=\dfrac{16x+14-23}{8x+7}=\dfrac{16x+14}{8x+7}+\dfrac{-23}{8x+7}=2+\dfrac{-23}{8x+7} \\Để\ 16x-9\vdots 8x+7 \\⇒-23\vdots 8x+7 \\⇒8x+7∈Ư(-23)=\{±1;±23\} \\+)8x+7=1⇔x=\dfrac{-3}{4} \\+)8x+7=-1⇔x=-1 \\+)8x+7=23⇔x=2 \\+)8x+7=-23⇔x=\dfrac{-15}{4} \\Vậy\ để\ 16x-9\vdots 8x+7\ thì\ x∈\bigg\{\dfrac{-3}{4};-1;2;\dfrac{-15}{4}\bigg\}$
Đáp án + Giải thích các bước giải:
Ta có :
`d,6x+5`
`=(6x-2)+7`
`=2(3x-1)+7`
Vì `2(3x-1)` $\vdots$ `3x-1`
Nên để `6x+5` $\vdots$ `3x-1`
Thì `7` $\vdots$ `3x-1`
`→3x-1∈Ư(7)`
`→3x-1∈{±1;±7}`
`→3x∈{0;2;-6;8}`
`→x∈{0;\frac{2}{3};-2;\frac{8}{3}}`
Vậy `x∈{0;\frac{2}{3};-2;\frac{8}{3}}`
`———————-`
`e,16x-9`
`=(16x+14)-23`
`=2(8x+7)-23`
Vì `2(8x+7)` $\vdots$ `8x+7`
Nên để `16x-9` $\vdots$ `8x+7`
Thì `23` $\vdots$ `8x+7`
`→8x+7∈Ư(23)`
`→8x+7∈{±1;±23}`
`→8x∈{-8;-6;-30;16}`
`→x∈{-1;-\frac{3}{4};-\frac{15}{4};2}`
Vậy `x∈{-1;-\frac{3}{4};-\frac{15}{4};2}`