Xét dấu tam thức bật hai sau:f(x)= (x bình p -x-6)(x+1) 01/10/2021 Bởi Piper Xét dấu tam thức bật hai sau:f(x)= (x bình p -x-6)(x+1)
Ta có $f(x) = (x^2 – x – 6)(x+1)$ $= [(x^2 – 3x) + (2x – 6)](x+1)$ $= [x(x-3) + 2(x-3)](x+1)$ $= (x+2)(x-3)(x+1)$ Với $x > 3$, ta có $f(x) > 0$ Với $-1 < x < 3$, ta có $f(x) < 0$ Với $-2 < x < -1$, ta có $f(x) > 0$ Với $x < -2$, ta có $f(x) < 0$. Bình luận
Ta có
$f(x) = (x^2 – x – 6)(x+1)$
$= [(x^2 – 3x) + (2x – 6)](x+1)$
$= [x(x-3) + 2(x-3)](x+1)$
$= (x+2)(x-3)(x+1)$
Với $x > 3$, ta có $f(x) > 0$
Với $-1 < x < 3$, ta có $f(x) < 0$
Với $-2 < x < -1$, ta có $f(x) > 0$
Với $x < -2$, ta có $f(x) < 0$.
Bạn xem hình