xét tính cẵn lẻ của các hàm số sau a.y=x^4-4x ²+2 b.y=-2x ³+3x c.y=I x=2 I – I x-2 I d.y=I 2x+1 I + I2x-1 I e.y=(x-1) ² f.y=x ²+x

xét tính cẵn lẻ của các hàm số sau
a.y=x^4-4x ²+2
b.y=-2x ³+3x
c.y=I x=2 I – I x-2 I
d.y=I 2x+1 I + I2x-1 I
e.y=(x-1) ²
f.y=x ²+x

0 bình luận về “xét tính cẵn lẻ của các hàm số sau a.y=x^4-4x ²+2 b.y=-2x ³+3x c.y=I x=2 I – I x-2 I d.y=I 2x+1 I + I2x-1 I e.y=(x-1) ² f.y=x ²+x”

  1. Các hàm số có $D=\mathbb{R}$

    a, $f(-x)=(-x)^4-4(-x)^2+2=x^4-4x^2+2=f(x)$

    $\to$ hàm số chẵn

    b, $f(-x)=-2(-x)^3+3(-x)=2x^3-3x=-f(x)$

    $\to$ hàm số lẻ 

    c, $f(-x)=|-x+2|-|-x-2|=|x-2|-|x+2|=-f(x)$

    $\to$ hàm số lẻ 

    d, $f(-x)=|-2x+1|+|-2x-1|=|2x-1|+|2x+1|=f(x)$

    $\to$ hàm số chẵn 

    e, $f(-x)=(-x-1)^2=(x+1)^2\ne \pm f(x)$

    $\to$ hàm số không chẵn không lẻ 

    f, $f(-x)=(-x)^2-x=x^2-x\ne \pm f(x)$

    $\to$ hàm số không chẵn không lẻ

    Bình luận
  2. Đáp án:

    $\begin{array}{l}
    a)f\left( x \right) = y = {x^4} – 4{x^2} + 2\\
     \Rightarrow f\left( { – x} \right) = {\left( { – x} \right)^4} – 4{\left( { – x} \right)^2} + 2\\
     = {x^4} – 4{x^2} + 2\\
     \Rightarrow f\left( { – x} \right) = f\left( x \right)\\
     \Rightarrow hs\,\text{chẵn}\\
    b)f\left( x \right) =  – 2{x^3} + 3x\\
     \Rightarrow f\left( { – x} \right) =  – 2.{\left( { – x} \right)^3} + 3.\left( { – x} \right)\\
     = 2{x^3} – 3x\\
     \Rightarrow f\left( { – x} \right) =  – f\left( x \right)\\
     \Rightarrow hs\,\text{lẻ}\\
    c)y = \left| {x + 2} \right| – \left| {x – 2} \right|\\
     \Rightarrow f\left( { – x} \right) = \left| { – x + 2} \right| – \left| { – x – 2} \right|\\
     = \left| {x – 2} \right| – \left| {x + 2} \right|\\
     \Rightarrow f\left( { – x} \right) =  – f\left( x \right)\\
     \Rightarrow hs\,\text{lẻ}\\
    d)y = \left| {2x + 1} \right| + \left| {2x – 1} \right|\\
     \Rightarrow f\left( { – x} \right) = \left| { – 2x + 1} \right| + \left| { – 2x – 1} \right|\\
     = \left| {2x – 1} \right| + \left| {2x + 1} \right|\\
     \Rightarrow f\left( { – x} \right) = f\left( x \right)\\
     \Rightarrow hs\,\text{chẵn}\\
    e)f\left( x \right) = {\left( {x – 1} \right)^2}\\
     \Rightarrow f\left( { – x} \right) = {\left( { – x – 1} \right)^2} = {\left( {x + 1} \right)^2}\\
     \Rightarrow f\left( x \right) \ne f\left( { – x} \right)\\
     \Rightarrow hs\,ko\,\text{chẵn};ko\,\text{lẻ}\\
    f)y = f\left( x \right) = {x^2} + x\\
     \Rightarrow f\left( { – x} \right) = {\left( { – x} \right)^2} – x = {x^2} – x \ne f\left( x \right)\\
     \Rightarrow hs\,ko\,\text{chẵn},ko\,\text{lẻ}
    \end{array}$

    Bình luận

Viết một bình luận