$\frac{1}{(x^2+2x+2)^2}$+ $\frac{1}{(x^2+2x+3)^2}$= $\frac{5}{4}$

$\frac{1}{(x^2+2x+2)^2}$+ $\frac{1}{(x^2+2x+3)^2}$= $\frac{5}{4}$

0 bình luận về “$\frac{1}{(x^2+2x+2)^2}$+ $\frac{1}{(x^2+2x+3)^2}$= $\frac{5}{4}$”

  1. Đáp án: $S=\{-1\}$

     

    Giải thích các bước giải:

    $ĐKXĐ:x∈R$ 

    Ta có: 

    $(x^2+2x+2)^2=[(x+1)^2+1]^2≥1^2=1$

    `⇒\frac{1}{(x^2+2x+2)^2}≤\frac{1}{1}=1`

    $(x^2+2x+3)^2=[(x+1)^2+2]^2≥2^2=4$

    `⇒\frac{1}{(x^2+2x+3)^2}≤\frac{1}{4}`

    `⇒\frac{1}{(x^2+2x+2)^2}+\frac{1}{(x^2+2x+3)^2}≤1+\frac{1}{4}=\frac{5}{4}`

    Dấu bằng xảy ra

    $⇔(x+1)^2=0⇔x+1=0⇔x=-1$ (thỏa mãn)

    Bình luận

Viết một bình luận