$\frac{x^2}{\left(x-1\right)^2}=3x^2+4x$ find x

$\frac{x^2}{\left(x-1\right)^2}=3x^2+4x$
find x

0 bình luận về “$\frac{x^2}{\left(x-1\right)^2}=3x^2+4x$ find x”

  1. CHÚC BẠN HỌC TỐT!!!

    Trả lời:

    ĐKXĐ: $x\neq 1$

    $\dfrac{x^2}{(x-1)^2}=3x^2+4x$

    $⇔x.\bigg{(}3x+4-\dfrac{x}{(x-1)^2}\bigg{)}=0$

    $⇔\left[ \begin{array}{l}x=0\\3x+4-\dfrac{x}{(x-1)^2}=0\,\,(1)\end{array} \right.$

    $(1)⇔3x-2+6-\dfrac{x}{x^2-2x+1}=0$

    $⇔3x-2+\dfrac{6x^2-13x+6}{x^2-2x+1}=0$

    $⇔3x-2+\dfrac{(3x-2)(2x-3)}{x^2-2x+1}=0$

    $⇔(3x-2).\bigg{(}1+\dfrac{2x-3}{x^2-2x+1}\bigg{)}=0$

    $⇔\left[ \begin{array}{l}x=\dfrac{2}{3}\\1+\dfrac{2x-3}{x^2-2x+1}=0\,\,(2)\end{array} \right.\,\,\,(2)⇔\dfrac{x^2-2}{x^2+2x-1}=0$

    $⇔x^2=2⇔x=±\sqrt{2}$

    Vậy `S={0;\frac{2}{3};\sqrt{2};-\sqrt{2}}`.

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    $\frac{x²}{(x-1)²}$ = 3x²+4x
    ⇔$\frac{x²}{(x-1)²}$ = $\frac{3x²(x-1)²}{(x-1)²}$ + $\frac{4x(x-1)²}{(x-1)²}$ 
    ⇔$\frac{x²}{(x-1)²}$ =$\frac{3x²(x-1)²+4x(x-1)²}{(x-1)²}$ 
    ⇔x²=(3x²+4x)(x-1)²
    ⇔x²=(3x²+4x)(x²-2x+1)
    ⇔x²=3x^4-6x³+3x²+4x³-8x²+4x
    ⇔-3x^4+6x³-4x³+x²-3x²+8x²-4x=0
    ⇔-3x^4+2x³+6x²-4x=0
    ⇔(-3x^4+6x²)+(2x³-4x)=0
    ⇔-3x²(x²-2)+2x(x²-2)=0
    ⇔(-3x²+2x)(x²-2)=0
    ⇔(-3x²+2x)(x²-2)=0
    ⇔\(\left[ \begin{array}{l}-3x²+2x=0\\x²-2=0\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x(-3x+2)=0\\x²=-2\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x=0\\-3x+2=0\end{array} \right.\) 
        Hoặc: x=√2
    ⇔\(\left[ \begin{array}{l}x=0\\x=$\frac{2}{3}$ \end{array} \right.\) 
        Hoặc: x=√2
    Vậy …..

    Bình luận

Viết một bình luận