[$\frac{x^2-y^2}{xy}$ -$\frac{1}{x+y}$ ($\frac{x^2}{y}$- $\frac{y^2}{x}$)]:$\frac{x-y}{x}$ [ 11/11/2021 Bởi Allison [$\frac{x^2-y^2}{xy}$ -$\frac{1}{x+y}$ ($\frac{x^2}{y}$- $\frac{y^2}{x}$)]:$\frac{x-y}{x}$ [
$[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}(\dfrac{x^2}{y}-\dfrac{y^2}{x})]:\dfrac{x-y}{x}$ $=[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}(\dfrac{x^3-y^3}{xy}].\dfrac{x}{x-y}$ $=[\dfrac{x^2-y^2}{xy}-\dfrac{x^3-y^3}{xy(x+y)}].\dfrac{x}{x-y}$ $=[\dfrac{(x^2-y^2)(x+y)-x^3+y^3}{xy(x+y)}].\dfrac{x}{x-y}$ $=[\dfrac{x^3-xy^2+x^2y-y^3-x^3+y^3}{xy(x+y)}].\dfrac{x}{x-y}$ $=\dfrac{x^2y-xy^2}{xy(x+y)}.\dfrac{x}{x-y}$ $=\dfrac{xy(x-y)}{xy(x+y)}.\dfrac{x}{x-y}$ $=\dfrac{x}{x+y}$ Bình luận
Đáp án: \(\dfrac{x}{{x + y}}\) Giải thích các bước giải: \(\begin{array}{l}\left[ {\dfrac{{{x^2} – {y^2}}}{{xy}} – \dfrac{1}{{x + y}}.\dfrac{{{x^3} – {y^3}}}{{xy}}} \right]:\dfrac{{x – y}}{x}\\ = \left( {\dfrac{{{x^2} – {y^2}}}{{xy}} – \dfrac{{{x^3} – {y^3}}}{{xy\left( {x + y} \right)}}} \right).\dfrac{x}{{x – y}}\\ = \dfrac{{\left( {x + y} \right)\left( {{x^2} – {y^2}} \right) – {x^3} + {y^3}}}{{xy\left( {x + y} \right)}}.\dfrac{x}{{x – y}}\\ = \dfrac{{{x^3} – x{y^2} + {x^2}y – {y^3} – {x^3} + {y^3}}}{{y\left( {x + y} \right)\left( {x – y} \right)}}\\ = \dfrac{{xy\left( { – y + x} \right)}}{{y\left( {x + y} \right)\left( {x – y} \right)}}\\ = \dfrac{{xy\left( {x – y} \right)}}{{y\left( {x + y} \right)\left( {x – y} \right)}}\\ = \dfrac{x}{{x + y}}\end{array}\) Bình luận
$[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}(\dfrac{x^2}{y}-\dfrac{y^2}{x})]:\dfrac{x-y}{x}$
$=[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}(\dfrac{x^3-y^3}{xy}].\dfrac{x}{x-y}$
$=[\dfrac{x^2-y^2}{xy}-\dfrac{x^3-y^3}{xy(x+y)}].\dfrac{x}{x-y}$
$=[\dfrac{(x^2-y^2)(x+y)-x^3+y^3}{xy(x+y)}].\dfrac{x}{x-y}$
$=[\dfrac{x^3-xy^2+x^2y-y^3-x^3+y^3}{xy(x+y)}].\dfrac{x}{x-y}$
$=\dfrac{x^2y-xy^2}{xy(x+y)}.\dfrac{x}{x-y}$
$=\dfrac{xy(x-y)}{xy(x+y)}.\dfrac{x}{x-y}$
$=\dfrac{x}{x+y}$
Đáp án:
\(\dfrac{x}{{x + y}}\)
Giải thích các bước giải:
\(\begin{array}{l}
\left[ {\dfrac{{{x^2} – {y^2}}}{{xy}} – \dfrac{1}{{x + y}}.\dfrac{{{x^3} – {y^3}}}{{xy}}} \right]:\dfrac{{x – y}}{x}\\
= \left( {\dfrac{{{x^2} – {y^2}}}{{xy}} – \dfrac{{{x^3} – {y^3}}}{{xy\left( {x + y} \right)}}} \right).\dfrac{x}{{x – y}}\\
= \dfrac{{\left( {x + y} \right)\left( {{x^2} – {y^2}} \right) – {x^3} + {y^3}}}{{xy\left( {x + y} \right)}}.\dfrac{x}{{x – y}}\\
= \dfrac{{{x^3} – x{y^2} + {x^2}y – {y^3} – {x^3} + {y^3}}}{{y\left( {x + y} \right)\left( {x – y} \right)}}\\
= \dfrac{{xy\left( { – y + x} \right)}}{{y\left( {x + y} \right)\left( {x – y} \right)}}\\
= \dfrac{{xy\left( {x – y} \right)}}{{y\left( {x + y} \right)\left( {x – y} \right)}}\\
= \dfrac{x}{{x + y}}
\end{array}\)