$(\frac{3+\sqrt{3}}{\sqrt{3}}-2)($ $\frac{2}{\sqrt{3}-1})$ 05/07/2021 Bởi Rylee $(\frac{3+\sqrt{3}}{\sqrt{3}}-2)($ $\frac{2}{\sqrt{3}-1})$
$\left(\dfrac{3+\sqrt 3}{\sqrt 3}-2\right).\dfrac{2}{\sqrt 3-1}\\=\left(\dfrac{\sqrt 3(\sqrt 3+1)}{\sqrt 3}-2\right).\dfrac{2}{\sqrt 3-1}\\=(\sqrt 3+1-2).\dfrac{2}{\sqrt 3-1}\\=(\sqrt 3-1).\dfrac{2}{\sqrt 3-1}\\=2$ Bình luận
Đáp án: ` =2` Giải thích các bước giải:`((3 + sqrt(3))/sqrt(3) – 2)*2/(sqrt(3) – 1)` `= {((sqrt(3) + 3)/(sqrt(3))*(sqrt(3))/(sqrt(3))-2)*2}/(sqrt(3) – 1)``=((((sqrt(3) + 3)*sqrt(3))/3 – 6/3)*2)/(sqrt(3) – 1)``=(((3 sqrt(3) -3)/3 )*2)/(sqrt(3) – 1)``=2/(3 (sqrt(3) – 1)) 3 sqrt(3) – 3``=2/(3 (sqrt(3) – 1)) 3 (sqrt(3) – 1)``=2` Bình luận
$\left(\dfrac{3+\sqrt 3}{\sqrt 3}-2\right).\dfrac{2}{\sqrt 3-1}\\=\left(\dfrac{\sqrt 3(\sqrt 3+1)}{\sqrt 3}-2\right).\dfrac{2}{\sqrt 3-1}\\=(\sqrt 3+1-2).\dfrac{2}{\sqrt 3-1}\\=(\sqrt 3-1).\dfrac{2}{\sqrt 3-1}\\=2$
Đáp án:
` =2`
Giải thích các bước giải:
`((3 + sqrt(3))/sqrt(3) – 2)*2/(sqrt(3) – 1)`
`= {((sqrt(3) + 3)/(sqrt(3))*(sqrt(3))/(sqrt(3))-2)*2}/(sqrt(3) – 1)`
`=((((sqrt(3) + 3)*sqrt(3))/3 – 6/3)*2)/(sqrt(3) – 1)`
`=(((3 sqrt(3) -3)/3 )*2)/(sqrt(3) – 1)`
`=2/(3 (sqrt(3) – 1)) 3 sqrt(3) – 3`
`=2/(3 (sqrt(3) – 1)) 3 (sqrt(3) – 1)`
`=2`