Giải bất phương trình : căn -x+3x+4 <= x+1 13/10/2021 Bởi Lyla Giải bất phương trình : căn -x+3x+4 <= x+1
Đáp án: $\left[ \begin{array}{l}x = – 1\\\dfrac{3}{2} \le x \le 4\end{array} \right.$ Giải thích các bước giải: $\begin{array}{l}\sqrt { – {x^2} + 3x + 4} \le x + 1\left( 1 \right)\\Dkxd:\left\{ \begin{array}{l} – {x^2} + 3x + 4 \ge 0\\x + 1 \ge 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{x^2} – 3x – 4 \le 0\\x \ge – 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}\left( {x – 4} \right)\left( {x + 1} \right) \le 0\\x \ge – 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} – 1 \le x \le 4\\x \ge – 1\end{array} \right.\\ \Rightarrow – 1 \le x \le 4\\\left( 1 \right) \Rightarrow – {x^2} + 3x + 4 \le {\left( {x + 1} \right)^2}\\ \Rightarrow – {x^2} + 3x + 4 \le {x^2} + 2x + 1\\ \Rightarrow 2{x^2} – x – 3 \ge 0\\ \Rightarrow \left( {2x – 3} \right)\left( {x + 1} \right) \ge 0\\ \Rightarrow \left[ \begin{array}{l}x \ge \dfrac{3}{2}\\x \le – 1\end{array} \right.\\Vậy\,\left[ \begin{array}{l}x = – 1\\\dfrac{3}{2} \le x \le 4\end{array} \right.\end{array}$ Bình luận
Đáp án: $\left[ \begin{array}{l}
x = – 1\\
\dfrac{3}{2} \le x \le 4
\end{array} \right.$
Giải thích các bước giải:
$\begin{array}{l}
\sqrt { – {x^2} + 3x + 4} \le x + 1\left( 1 \right)\\
Dkxd:\left\{ \begin{array}{l}
– {x^2} + 3x + 4 \ge 0\\
x + 1 \ge 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x^2} – 3x – 4 \le 0\\
x \ge – 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\left( {x – 4} \right)\left( {x + 1} \right) \le 0\\
x \ge – 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
– 1 \le x \le 4\\
x \ge – 1
\end{array} \right.\\
\Rightarrow – 1 \le x \le 4\\
\left( 1 \right) \Rightarrow – {x^2} + 3x + 4 \le {\left( {x + 1} \right)^2}\\
\Rightarrow – {x^2} + 3x + 4 \le {x^2} + 2x + 1\\
\Rightarrow 2{x^2} – x – 3 \ge 0\\
\Rightarrow \left( {2x – 3} \right)\left( {x + 1} \right) \ge 0\\
\Rightarrow \left[ \begin{array}{l}
x \ge \dfrac{3}{2}\\
x \le – 1
\end{array} \right.\\
Vậy\,\left[ \begin{array}{l}
x = – 1\\
\dfrac{3}{2} \le x \le 4
\end{array} \right.
\end{array}$