Giải bất pt sau: x+2001/2016 + x+2002/2017 > x+2003/2018 + x+2004/2019

Giải bất pt sau:
x+2001/2016 + x+2002/2017 > x+2003/2018 + x+2004/2019

0 bình luận về “Giải bất pt sau: x+2001/2016 + x+2002/2017 > x+2003/2018 + x+2004/2019”

  1. Đáp án + Giải thích các bước giải:

    `(x+2001)/(2016)+(x+2002)/(2017)>(x+2003)/(2018)+(x+2004)/(2019)`

    `<=>((x+2001)/(2016)-1)+((x+2002)/(2017)-1)>((x+2003)/(2018)-1)+((x+2004)/(2019)-1)`

    `<=>((x+2001)/(2016)-(2016)/(2016))+((x+2002)/(2017)-(2017)/(2017))>((x+2003)/(2018)-(2018)/(2018))+((x+2004)/(2019)-(2019)/(2019))`

    `<=>(x-15)/(2016)+(x-15)/(2017)>(x-15)/(2018)+(x-15)/(2019)`

    `<=>(x-15)/(2016)+(x-15)/(2017)-(x-15)/(2018)-(x-15)/(2019)>0`

    `<=>(x-15)((1)/(2016)+(1)/(2017)-(1)/(2018)-(1)/(2019))>0`

    Vì `(1)/(2016)+(1)/(2017)-(1)/(2018)-(1)/(2019)>0`

    `=>x-15>0`

    `<=>x>15`

    Vậy nghiệm bất phương trình là : `x>15`

    Bình luận
  2. \( \dfrac{x+2001}{2016}+\dfrac{x+2002}{2017}>\dfrac{x+2003}{2018}+\dfrac{x+2004}{2019}\\↔(\dfrac{x+2001}{2016}-1)+(\dfrac{x+2002}{2017}-1)>(\dfrac{x+2003}{2018}-1)+(\dfrac{x+2004}{2019}-1)\\↔\dfrac{x-15}{2016}+\dfrac{x-15}{2017}>\dfrac{x-15}{2018}+\dfrac{x-15}{2019}\\↔\dfrac{x-15}{2016}+\dfrac{x-15}{2017}-\dfrac{x-15}{2018}-\dfrac{x-15}{2019}>0\\↔(x-15)(\dfrac{1}{2016}+\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019})>0\\Vì\,\,\dfrac{1}{2016}>\dfrac{1}{2018}\\\dfrac{1}{2017}>\dfrac{1}{2019}\\→\dfrac{1}{2016}+\dfrac{1}{2017}>\dfrac{1}{2018}+\dfrac{1}{2019}\\↔\dfrac{1}{2016}+\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}>0\\→x-15>0\\↔x>15\\\text{Vậy tập nghiệm của bất phương trình là}\,\,\{x|x>15\}\)

    Bình luận

Viết một bình luận