Giải bpt: a, (2x+5).(4x^2-1) <= 0 b, (x+2).(2x+1) <= 3.căn(2x^2 + 5x + 2) 18/09/2021 Bởi Parker Giải bpt: a, (2x+5).(4x^2-1) <= 0 b, (x+2).(2x+1) <= 3.căn(2x^2 + 5x + 2)
Đáp án: a. \(x \in \left( { – \infty ; – \dfrac{5}{2}} \right] \cup \left[ { – \dfrac{1}{2};\dfrac{1}{2}} \right]\) Giải thích các bước giải: \(\begin{array}{l}a.\left( {2x + 5} \right)\left( {4{x^2} – 1} \right) \le 0\\ \to \left( {2x + 5} \right)\left( {2x – 1} \right)\left( {2x + 1} \right) \le 0\end{array}\) BXD: x -∞ -5/2 -1/2 1/2 +∞ f(x) – 0 + 0 – 0 + \(KL:x \in \left( { – \infty ; – \dfrac{5}{2}} \right] \cup \left[ { – \dfrac{1}{2};\dfrac{1}{2}} \right]\) \(\begin{array}{l}b.2{x^2} + 5x + 2 \le 3\sqrt {2{x^2} + 5x + 2} \\ \to \sqrt {2{x^2} + 5x + 2} \left( {\sqrt {2{x^2} + 5x + 2} – 3} \right) \le 0\\ \to \left\{ \begin{array}{l}\sqrt {2{x^2} + 5x + 2} \ge 0\\\sqrt {2{x^2} + 5x + 2} \le 3\end{array} \right.\\ \to \left\{ \begin{array}{l}\left( {x + 2} \right)\left( {2x + 1} \right) \ge 0\\2{x^2} + 5x + 2 \le 9\end{array} \right.\\ \to \left\{ \begin{array}{l}x \in \left( { – \infty ; – 2} \right] \cup \left[ { – \dfrac{1}{2}; + \infty } \right)\\\left( {x – 1} \right)\left( {2x + 7} \right) \le 0\end{array} \right.\\ \to \left\{ \begin{array}{l}x \in \left( { – \infty ; – 2} \right] \cup \left[ { – \dfrac{1}{2}; + \infty } \right)\\x \in \left[ { – \dfrac{7}{2};1} \right]\end{array} \right.\\KL:x \in \left[ { – \dfrac{7}{2}; – 2} \right] \cup \left[ { – \dfrac{1}{2};1} \right]\end{array}\) Bình luận
Đáp án:
a. \(x \in \left( { – \infty ; – \dfrac{5}{2}} \right] \cup \left[ { – \dfrac{1}{2};\dfrac{1}{2}} \right]\)
Giải thích các bước giải:
\(\begin{array}{l}
a.\left( {2x + 5} \right)\left( {4{x^2} – 1} \right) \le 0\\
\to \left( {2x + 5} \right)\left( {2x – 1} \right)\left( {2x + 1} \right) \le 0
\end{array}\)
BXD:
x -∞ -5/2 -1/2 1/2 +∞
f(x) – 0 + 0 – 0 +
\(KL:x \in \left( { – \infty ; – \dfrac{5}{2}} \right] \cup \left[ { – \dfrac{1}{2};\dfrac{1}{2}} \right]\)
\(\begin{array}{l}
b.2{x^2} + 5x + 2 \le 3\sqrt {2{x^2} + 5x + 2} \\
\to \sqrt {2{x^2} + 5x + 2} \left( {\sqrt {2{x^2} + 5x + 2} – 3} \right) \le 0\\
\to \left\{ \begin{array}{l}
\sqrt {2{x^2} + 5x + 2} \ge 0\\
\sqrt {2{x^2} + 5x + 2} \le 3
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left( {x + 2} \right)\left( {2x + 1} \right) \ge 0\\
2{x^2} + 5x + 2 \le 9
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \in \left( { – \infty ; – 2} \right] \cup \left[ { – \dfrac{1}{2}; + \infty } \right)\\
\left( {x – 1} \right)\left( {2x + 7} \right) \le 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \in \left( { – \infty ; – 2} \right] \cup \left[ { – \dfrac{1}{2}; + \infty } \right)\\
x \in \left[ { – \dfrac{7}{2};1} \right]
\end{array} \right.\\
KL:x \in \left[ { – \dfrac{7}{2}; – 2} \right] \cup \left[ { – \dfrac{1}{2};1} \right]
\end{array}\)