Giải bpt sau : $\sqrt{x^{2}-1}$ + $\sqrt{x^{2}-x}$ $\leq$ $\sqrt{x^{2}+x-2}$ 23/09/2021 Bởi Mary Giải bpt sau : $\sqrt{x^{2}-1}$ + $\sqrt{x^{2}-x}$ $\leq$ $\sqrt{x^{2}+x-2}$
Đáp án: $S = \left\{ 1 \right\}$ Giải thích các bước giải: ĐKXĐ: $\left[ \begin{array}{l}x \ge 1\\x \le – 2\end{array} \right.$ Ta có: $\sqrt {{x^2} – 1} + \sqrt {{x^2} – x} \le \sqrt {{x^2} + x – 2} \left( 1 \right)$ $\begin{array}{l} + )TH1:x \ge 1\\\left( 1 \right) \Leftrightarrow \sqrt {x – 1} .\sqrt {x + 1} + \sqrt {x – 1} .\sqrt x \le \sqrt {x – 1} .\sqrt {x + 2} \\ \Leftrightarrow \sqrt {x – 1} \left( {\sqrt {x + 1} + \sqrt x } \right) \le \sqrt {x – 1} .\sqrt {x + 2} \\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {x – 1} = 0\\\sqrt {x + 1} + \sqrt x \le \sqrt {x + 2} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x – 1 = 0\\2x + 1 + 2\sqrt {x\left( {x + 1} \right)} \le x + 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\2\sqrt {x\left( {x + 1} \right)} \le 1 – x\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\2\sqrt {x\left( {x + 1} \right)} = 1 – x = 0\left( {do:1 – x \le 0} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\\left\{ \begin{array}{l}x = 1\\\left[ \begin{array}{l}x = 0\\x = – 1\end{array} \right.\end{array} \right.\left( l \right)\end{array} \right.\\ \Leftrightarrow x = 1\end{array}$ $\begin{array}{l} + )TH2:x \le – 2\\\left( 1 \right) \Leftrightarrow \sqrt {1 – x} .\sqrt { – x – 1} + \sqrt {1 – x} .\sqrt { – x} \le \sqrt {1 – x} .\sqrt { – 2 – x} \\ \Leftrightarrow \sqrt {1 – x} \left( {\sqrt { – x – 1} + \sqrt { – x} } \right) \le \sqrt {1 – x} .\sqrt { – 2 – x} \\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {1 – x} = 0\\\sqrt { – x – 1} + \sqrt { – x} \le \sqrt { – x – 2} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( l \right)\\ – 2x – 1 + 2\sqrt {x\left( {x + 1} \right)} \le – x – 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( l \right)\\2\sqrt {x\left( {x + 1} \right)} \le x – 1\left( {vn,do:x \le – 2 \Rightarrow x – 1 \le – 3 < 0} \right)\end{array} \right.\end{array}$ Vậy bất phương trình có tập nghiệm $S = \left\{ 1 \right\}$ Bình luận
Đáp án:
$S = \left\{ 1 \right\}$
Giải thích các bước giải:
ĐKXĐ: $\left[ \begin{array}{l}
x \ge 1\\
x \le – 2
\end{array} \right.$
Ta có:
$\sqrt {{x^2} – 1} + \sqrt {{x^2} – x} \le \sqrt {{x^2} + x – 2} \left( 1 \right)$
$\begin{array}{l}
+ )TH1:x \ge 1\\
\left( 1 \right) \Leftrightarrow \sqrt {x – 1} .\sqrt {x + 1} + \sqrt {x – 1} .\sqrt x \le \sqrt {x – 1} .\sqrt {x + 2} \\
\Leftrightarrow \sqrt {x – 1} \left( {\sqrt {x + 1} + \sqrt x } \right) \le \sqrt {x – 1} .\sqrt {x + 2} \\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {x – 1} = 0\\
\sqrt {x + 1} + \sqrt x \le \sqrt {x + 2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x – 1 = 0\\
2x + 1 + 2\sqrt {x\left( {x + 1} \right)} \le x + 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
2\sqrt {x\left( {x + 1} \right)} \le 1 – x
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
2\sqrt {x\left( {x + 1} \right)} = 1 – x = 0\left( {do:1 – x \le 0} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
\left\{ \begin{array}{l}
x = 1\\
\left[ \begin{array}{l}
x = 0\\
x = – 1
\end{array} \right.
\end{array} \right.\left( l \right)
\end{array} \right.\\
\Leftrightarrow x = 1
\end{array}$
$\begin{array}{l}
+ )TH2:x \le – 2\\
\left( 1 \right) \Leftrightarrow \sqrt {1 – x} .\sqrt { – x – 1} + \sqrt {1 – x} .\sqrt { – x} \le \sqrt {1 – x} .\sqrt { – 2 – x} \\
\Leftrightarrow \sqrt {1 – x} \left( {\sqrt { – x – 1} + \sqrt { – x} } \right) \le \sqrt {1 – x} .\sqrt { – 2 – x} \\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {1 – x} = 0\\
\sqrt { – x – 1} + \sqrt { – x} \le \sqrt { – x – 2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\left( l \right)\\
– 2x – 1 + 2\sqrt {x\left( {x + 1} \right)} \le – x – 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\left( l \right)\\
2\sqrt {x\left( {x + 1} \right)} \le x – 1\left( {vn,do:x \le – 2 \Rightarrow x – 1 \le – 3 < 0} \right)
\end{array} \right.
\end{array}$
Vậy bất phương trình có tập nghiệm $S = \left\{ 1 \right\}$