giải các phương trình sau: 1,(8-5x)(x+2)+4(x-2)(x-1)+(x-2)(x+2) 2,4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2) 19/09/2021 Bởi Raelynn giải các phương trình sau: 1,(8-5x)(x+2)+4(x-2)(x-1)+(x-2)(x+2) 2,4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
`a)` `(8-5x)(x+2)+4(x-2)(x-1)+(x-2)(x+2)=0` `<=>8x+16-5x^2-10x+(4x-8)(x-1)+x^2-4=0` `<=>8x+16-5x^2-10x+4x^2-4x-8x+8+x^2-4=0` `<=>20-14x=0` `<=>-14x=-20` `<=>x=10/7` Vậy `S={10/7}` `b)` `(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)` `<=>(x+5)[4(x-1)-(x+2)]=(3x-3)(x+2)` `<=>(x+5)(4x-4-x-2)=3x^2+6x-3x-6` `<=>(x+5)(3x-6)=3x^2+3x-6` `<=>3x^2-6x+15x-30=3x^2+3x-6` `<=>3x^2+9x-30-3x^2-3x+6=0` `<=>6x-24=0` `<=>6x=24` `<=>x=4` Vậy `S={4}` Bình luận
Đáp án: Giải thích các bước giải: 1/. (8-5x)(x+2) + 4(x-2)(x-1)+(x-2)(x+2) = 0 ⇔ 8x + 16 – 5x² – 10x + 4x² – 4x – 8x + 8 + x² -4 = 0 ⇔ – 14x + 20 =0 ⇔ 14x = 20 ⇒ x = 20 : 14 ⇒ x = 10/7 Vậy S= {10/7} 2/. 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2) ⇔ (x + 5)[4(x-1) – (x +2)] = 3(x-1)(x+2) ⇔ (x + 5)(4x – 4 – x -2) = 3(x-1)(x+2) ⇔ (x + 5)(3x -6) = 3(x-1)(x+2) ⇔ (x + 5)(3x – 6) – 3(x-1)(x+2) = 0 ⇔ 3x² – 6x + 15x – 30 – 3x² – 6x + 3x + 6 = 0 ⇔ 6x – 24 = 0 ⇔ 6x = 24 ⇔ x = 24 : 6 ⇒ x = 4 Vậy S = {4} Bình luận
`a)` `(8-5x)(x+2)+4(x-2)(x-1)+(x-2)(x+2)=0`
`<=>8x+16-5x^2-10x+(4x-8)(x-1)+x^2-4=0`
`<=>8x+16-5x^2-10x+4x^2-4x-8x+8+x^2-4=0`
`<=>20-14x=0`
`<=>-14x=-20`
`<=>x=10/7`
Vậy `S={10/7}`
`b)` `(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)`
`<=>(x+5)[4(x-1)-(x+2)]=(3x-3)(x+2)`
`<=>(x+5)(4x-4-x-2)=3x^2+6x-3x-6`
`<=>(x+5)(3x-6)=3x^2+3x-6`
`<=>3x^2-6x+15x-30=3x^2+3x-6`
`<=>3x^2+9x-30-3x^2-3x+6=0`
`<=>6x-24=0`
`<=>6x=24`
`<=>x=4`
Vậy `S={4}`
Đáp án:
Giải thích các bước giải:
1/. (8-5x)(x+2) + 4(x-2)(x-1)+(x-2)(x+2) = 0
⇔ 8x + 16 – 5x² – 10x + 4x² – 4x – 8x + 8 + x² -4 = 0
⇔ – 14x + 20 =0
⇔ 14x = 20
⇒ x = 20 : 14
⇒ x = 10/7
Vậy S= {10/7}
2/. 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
⇔ (x + 5)[4(x-1) – (x +2)] = 3(x-1)(x+2)
⇔ (x + 5)(4x – 4 – x -2) = 3(x-1)(x+2)
⇔ (x + 5)(3x -6) = 3(x-1)(x+2)
⇔ (x + 5)(3x – 6) – 3(x-1)(x+2) = 0
⇔ 3x² – 6x + 15x – 30 – 3x² – 6x + 3x + 6 = 0
⇔ 6x – 24 = 0
⇔ 6x = 24
⇔ x = 24 : 6
⇒ x = 4
Vậy S = {4}