giải các phương trình sau a. x^4+4x^2=3 b. x^4+x^2=6 c. (x^2+x)^2+4(x^2+x)=12 11/10/2021 Bởi Quinn giải các phương trình sau a. x^4+4x^2=3 b. x^4+x^2=6 c. (x^2+x)^2+4(x^2+x)=12
`a,` `x^4+4x^2=3` Gọi `x^2=t` `⇒Pt` có dạng : `t^2+4t=3` ⇒t^2+4t+4=7` `⇒t^2+2.2t+2^2=7` `⇒(t+2)^2=7` \(⇒\left[ \begin{array}{l}t+2=\sqrt7\\t+2=-\sqrt{7}\end{array} \right.\) \(⇒\left[ \begin{array}{l}x^2=\sqrt7-2\\x^2=-\sqrt{7}-2 (KTM)\end{array} \right.\) `⇒x=±\sqrt{\sqrt{7}-2}` `b,` `x^4+x^2=6` Gọi `x^2=t` `⇒Pt` có dạng : `t^2+t=6` `⇒t^2+t-6=0` `⇒(t^2-2t)+(3t-6)=0` `⇒t(t-2)+3(t-2)=0` `⇒(t+3)(t-2)` \(⇒\left[ \begin{array}{l}t+3=0\\t-2=0\end{array} \right.\) \(⇒\left[ \begin{array}{l}x^2=-3(KTM)\\x^2=2\end{array} \right.\) `⇒x=±\sqrt2` `c,` `(x^2+x)^2+4(x^2+x)=12` Đặt : `x^2+x=t` `⇒Pt` có dạng : `t^2+4t=12` `⇒t^2+4t-12=0` `⇒(t^2+6t)-(2t+12)=0` `⇒t(t+6)-2(t+6)=0` `⇒(t-2)(t+6)=0` \(⇒\left[ \begin{array}{l}t-2=0\\t+6=0\end{array} \right.\) \(⇒\left[ \begin{array}{l}x^2+x=2\\x^2+x=-6(KTM)\end{array} \right. (\text{vì }x^2+x\geq0)\) `⇒x^2+x-2=0` `⇒(x^2+2x)-(x+2)=0` `⇒x(x+2)-(x+2)=0` `⇒(x-1)(x+2)=0` \(⇒\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\) Bình luận
Đáp án: $\begin{array}{l}a){x^4} + 4{x^2} = 3\\Đặt:{x^2} = t\left( {t \ge 0} \right)\\ \Rightarrow {t^2} + 4t – 3 = 0\\ \Rightarrow {t^2} + 4t + 4 – 7 = 0\\ \Rightarrow {\left( {t + 2} \right)^2} – 7 = 0\\ \Rightarrow \left( {t + 2 + \sqrt 7 } \right)\left( {t + 2 – \sqrt 7 } \right) = 0\\ \Rightarrow \left[ \begin{array}{l}t + 2 + \sqrt 7 = 0\\t + 2 – \sqrt 7 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{x^2} = – 2 – \sqrt 7 \left( {ktm} \right)\\{x^2} = \sqrt 7 – 2\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = – \sqrt {\sqrt 7 – 2} \\x = \sqrt {\sqrt 7 – 2} \end{array} \right.\\b){x^4} + {x^2} = 6\\Đặt:{x^2} = t\left( {t \ge 0} \right)\\ \Rightarrow {t^2} + t = 6\\ \Rightarrow {t^2} + t – 6 = 0\\ \Rightarrow \left( {t – 2} \right)\left( {t + 3} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}t – 2 = 0\\t + 3 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{x^2} – 2 = 0\\{x^2} + 3 = 0\left( {ktm} \right)\end{array} \right.\\ \Rightarrow {x^2} = 2\\ \Rightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = – \sqrt 2 \end{array} \right.\\Vậy\,x = \sqrt 2 ;x = – \sqrt 2 \\c){\left( {{x^2} + x} \right)^2} + 4\left( {{x^2} + x} \right) = 12\\Đặt:{x^2} + x = a\\ \Rightarrow {a^2} + 4a = 12\\ \Rightarrow {a^2} + 4a – 12 = 0\\ \Rightarrow \left( {a – 2} \right)\left( {a + 6} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}a – 2 = 0\\a + 6 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{x^2} + x – 2 = 0\\{x^2} + x + 6 = 0\left( {ktm} \right)\end{array} \right.\\ \Rightarrow \left[ {\left( {x – 1} \right)\left( {x + 2} \right) = 0} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 1\\x = – 2\end{array} \right.\\Vậy\,x = 1;x = – 2\end{array}$ Bình luận
`a,` `x^4+4x^2=3`
Gọi `x^2=t`
`⇒Pt` có dạng :
`t^2+4t=3`
⇒t^2+4t+4=7`
`⇒t^2+2.2t+2^2=7`
`⇒(t+2)^2=7`
\(⇒\left[ \begin{array}{l}t+2=\sqrt7\\t+2=-\sqrt{7}\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x^2=\sqrt7-2\\x^2=-\sqrt{7}-2 (KTM)\end{array} \right.\)
`⇒x=±\sqrt{\sqrt{7}-2}`
`b,` `x^4+x^2=6`
Gọi `x^2=t`
`⇒Pt` có dạng : `t^2+t=6`
`⇒t^2+t-6=0`
`⇒(t^2-2t)+(3t-6)=0`
`⇒t(t-2)+3(t-2)=0`
`⇒(t+3)(t-2)`
\(⇒\left[ \begin{array}{l}t+3=0\\t-2=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x^2=-3(KTM)\\x^2=2\end{array} \right.\)
`⇒x=±\sqrt2`
`c,` `(x^2+x)^2+4(x^2+x)=12`
Đặt : `x^2+x=t`
`⇒Pt` có dạng : `t^2+4t=12`
`⇒t^2+4t-12=0`
`⇒(t^2+6t)-(2t+12)=0`
`⇒t(t+6)-2(t+6)=0`
`⇒(t-2)(t+6)=0`
\(⇒\left[ \begin{array}{l}t-2=0\\t+6=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x^2+x=2\\x^2+x=-6(KTM)\end{array} \right. (\text{vì }x^2+x\geq0)\)
`⇒x^2+x-2=0`
`⇒(x^2+2x)-(x+2)=0`
`⇒x(x+2)-(x+2)=0`
`⇒(x-1)(x+2)=0`
\(⇒\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Đáp án:
$\begin{array}{l}
a){x^4} + 4{x^2} = 3\\
Đặt:{x^2} = t\left( {t \ge 0} \right)\\
\Rightarrow {t^2} + 4t – 3 = 0\\
\Rightarrow {t^2} + 4t + 4 – 7 = 0\\
\Rightarrow {\left( {t + 2} \right)^2} – 7 = 0\\
\Rightarrow \left( {t + 2 + \sqrt 7 } \right)\left( {t + 2 – \sqrt 7 } \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
t + 2 + \sqrt 7 = 0\\
t + 2 – \sqrt 7 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
{x^2} = – 2 – \sqrt 7 \left( {ktm} \right)\\
{x^2} = \sqrt 7 – 2
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = – \sqrt {\sqrt 7 – 2} \\
x = \sqrt {\sqrt 7 – 2}
\end{array} \right.\\
b){x^4} + {x^2} = 6\\
Đặt:{x^2} = t\left( {t \ge 0} \right)\\
\Rightarrow {t^2} + t = 6\\
\Rightarrow {t^2} + t – 6 = 0\\
\Rightarrow \left( {t – 2} \right)\left( {t + 3} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
t – 2 = 0\\
t + 3 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
{x^2} – 2 = 0\\
{x^2} + 3 = 0\left( {ktm} \right)
\end{array} \right.\\
\Rightarrow {x^2} = 2\\
\Rightarrow \left[ \begin{array}{l}
x = \sqrt 2 \\
x = – \sqrt 2
\end{array} \right.\\
Vậy\,x = \sqrt 2 ;x = – \sqrt 2 \\
c){\left( {{x^2} + x} \right)^2} + 4\left( {{x^2} + x} \right) = 12\\
Đặt:{x^2} + x = a\\
\Rightarrow {a^2} + 4a = 12\\
\Rightarrow {a^2} + 4a – 12 = 0\\
\Rightarrow \left( {a – 2} \right)\left( {a + 6} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
a – 2 = 0\\
a + 6 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
{x^2} + x – 2 = 0\\
{x^2} + x + 6 = 0\left( {ktm} \right)
\end{array} \right.\\
\Rightarrow \left[ {\left( {x – 1} \right)\left( {x + 2} \right) = 0} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 1\\
x = – 2
\end{array} \right.\\
Vậy\,x = 1;x = – 2
\end{array}$