giải các phương trình sau: a) 4 $sin^{2}$x -5sinx.cosx=0 b) 4 $sin^{2}$x-6 $cos^{2}$x 21/07/2021 Bởi Sadie giải các phương trình sau: a) 4 $sin^{2}$x -5sinx.cosx=0 b) 4 $sin^{2}$x-6 $cos^{2}$x
Đáp án: $\begin{array}{l}a)4{\sin ^2}x – 5\sin x.\cos x = 0\\ \Rightarrow \sin x\left( {4\sin x – 5\cos x} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}\sin x = 0\\4\sin x – 5\cos x = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = k\pi \\\dfrac{{4\sin x}}{{\cos x}} – 5 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = k\pi \\\tan x = \dfrac{5}{4}\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = k\pi \\x = \arctan \dfrac{5}{4} + k\pi \end{array} \right.\\b)4{\sin ^2}x – 6{\cos ^2}x = 0\\ + Khi:\cos x = 0\\ \Rightarrow 4{\sin ^2}x = 0\\ \Rightarrow \sin x = 0\left( {vn} \right)\\ + Khi:\cos x \ne 0\\ \Rightarrow \dfrac{{4{{\sin }^2}x}}{{{{\cos }^2}x}} – 6 = 0\\ \Rightarrow 4{\tan ^2}x – 6 = 0\\ \Rightarrow {\tan ^2}x = \dfrac{3}{2}\\ \Rightarrow \left[ \begin{array}{l}\tan x = \dfrac{{\sqrt 6 }}{2}\\\tan x = – \dfrac{{\sqrt 6 }}{2}\end{array} \right.\\ \Rightarrow x = \pm \arctan \left( {\dfrac{{\sqrt 6 }}{2}} \right) + k\pi \end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)4{\sin ^2}x – 5\sin x.\cos x = 0\\
\Rightarrow \sin x\left( {4\sin x – 5\cos x} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
\sin x = 0\\
4\sin x – 5\cos x = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = k\pi \\
\dfrac{{4\sin x}}{{\cos x}} – 5 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = k\pi \\
\tan x = \dfrac{5}{4}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \arctan \dfrac{5}{4} + k\pi
\end{array} \right.\\
b)4{\sin ^2}x – 6{\cos ^2}x = 0\\
+ Khi:\cos x = 0\\
\Rightarrow 4{\sin ^2}x = 0\\
\Rightarrow \sin x = 0\left( {vn} \right)\\
+ Khi:\cos x \ne 0\\
\Rightarrow \dfrac{{4{{\sin }^2}x}}{{{{\cos }^2}x}} – 6 = 0\\
\Rightarrow 4{\tan ^2}x – 6 = 0\\
\Rightarrow {\tan ^2}x = \dfrac{3}{2}\\
\Rightarrow \left[ \begin{array}{l}
\tan x = \dfrac{{\sqrt 6 }}{2}\\
\tan x = – \dfrac{{\sqrt 6 }}{2}
\end{array} \right.\\
\Rightarrow x = \pm \arctan \left( {\dfrac{{\sqrt 6 }}{2}} \right) + k\pi
\end{array}$