giải các phương trình sau : c) 5cosx = cos2x +3 d) ( cos2x – cos4x ) ² = 6 + 2sin3x 16/08/2021 Bởi Emery giải các phương trình sau : c) 5cosx = cos2x +3 d) ( cos2x – cos4x ) ² = 6 + 2sin3x
Giải thích các bước giải: Ta có: \[\begin{array}{l}c,\\5\cos x = \cos 2x + 3\\ \Leftrightarrow 5\cos x = \left( {2{{\cos }^2}x – 1} \right) + 3\\ \Leftrightarrow 2{\cos ^2}x – 5\cos x + 2 = 0\\ \Leftrightarrow \left( {2\cos x – 1} \right)\left( {\cos x – 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\{\mathop{\rm cosx}\nolimits} = 1\end{array} \right. \Rightarrow \cos x = \frac{1}{2}\\d,\\{\left( {\cos 2x – \cos 4x} \right)^2} = 6 + 2\sin 3x\\\left\{ \begin{array}{l}\cos 2x \le 1\\\cos 4x \ge – 1\end{array} \right. \Rightarrow \cos 2x – \cos 4x \le 2 \Rightarrow {\left( {\cos 2x – \cos 4x} \right)^2} \le 4\\\sin 3x \ge – 1 \Rightarrow 6 + 2\sin 3x \ge 4\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}\cos 2x – \cos 4x = 2\\\sin 3x = – 1\end{array} \right.\\\left\{ \begin{array}{l}\cos 2x – \cos 4x = – 2\\\sin 3x = – 1\end{array} \right.\end{array} \right.\end{array}\] Bình luận
Giải thích các bước giải:
Ta có:
\[\begin{array}{l}
c,\\
5\cos x = \cos 2x + 3\\
\Leftrightarrow 5\cos x = \left( {2{{\cos }^2}x – 1} \right) + 3\\
\Leftrightarrow 2{\cos ^2}x – 5\cos x + 2 = 0\\
\Leftrightarrow \left( {2\cos x – 1} \right)\left( {\cos x – 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = \frac{1}{2}\\
{\mathop{\rm cosx}\nolimits} = 1
\end{array} \right. \Rightarrow \cos x = \frac{1}{2}\\
d,\\
{\left( {\cos 2x – \cos 4x} \right)^2} = 6 + 2\sin 3x\\
\left\{ \begin{array}{l}
\cos 2x \le 1\\
\cos 4x \ge – 1
\end{array} \right. \Rightarrow \cos 2x – \cos 4x \le 2 \Rightarrow {\left( {\cos 2x – \cos 4x} \right)^2} \le 4\\
\sin 3x \ge – 1 \Rightarrow 6 + 2\sin 3x \ge 4\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\cos 2x – \cos 4x = 2\\
\sin 3x = – 1
\end{array} \right.\\
\left\{ \begin{array}{l}
\cos 2x – \cos 4x = – 2\\
\sin 3x = – 1
\end{array} \right.
\end{array} \right.
\end{array}\]