giải các pt sau:a)2x-3=3.(2x-3)+x+1 b) x(x+1)-(x+2).(x-3)=7 c)x-3/x+1=x^2/x^2-1 14/09/2021 Bởi Maria giải các pt sau:a)2x-3=3.(2x-3)+x+1 b) x(x+1)-(x+2).(x-3)=7 c)x-3/x+1=x^2/x^2-1
Đáp án: `a,2x-3=3(2x-3)+x+1` `<=>2x-3=6x-9+x+1` `<=>2x-3=7x-8` `<=>-5x=-5` `<=>x=1` Vậy `S={1}` `b,x(x+1)-(x+2)(x-3)=7` `<=>x^2+x-x^2+x+6-7=0` `<=>2x-1=0` `<=>x=1/2` Vậy `S={1/2}` `c,(x-3)/(x+1)=(x^2)/(x^2-1)` ĐKXĐ: `x\ne+-1` `<=>((x-3)(x-1))/(x^2-1)=(x^2)/(x^2-1)` `=>x^2-4x+3=x^2` `<=>-4x=-3` `<=>x=3/4(\text{tmđk})` Vậy `S={3/4}` Bình luận
`a) 2x-3=3(2x-3)+x+1` `<=> 2x-3=6x-9+x+1` `<=> 2x-3=7x-8` `<=> 7x-2x=-3+8` `<=> 5x=5` `<=> x=1` Vậy `S={1}` `b) x(x+1)-(x+2)(x-3)=7` `<=> x^2+x-(x^2-3x+2x-6)=7` `<=> x^2+x-x^2+x+6=7` `<=> 2x=1` `<=> x=1/2` Vậy `S={1/2}` `c) (x-3)/(x+1)=(x^2)/(x^2-1)` (`x \ne +-1`) `<=> ((x-3)(x-1))/((x+1)(x-1))=(x^2)/((x-1)(x+1))` `=> x^2-x-3x+3=x^2` `<=> x^2-x^2+4x=3` `<=> 4x=3` `<=> x=3/4` (TM) Vậy `S={3/4}` Bình luận
Đáp án:
`a,2x-3=3(2x-3)+x+1`
`<=>2x-3=6x-9+x+1`
`<=>2x-3=7x-8`
`<=>-5x=-5`
`<=>x=1`
Vậy `S={1}`
`b,x(x+1)-(x+2)(x-3)=7`
`<=>x^2+x-x^2+x+6-7=0`
`<=>2x-1=0`
`<=>x=1/2`
Vậy `S={1/2}`
`c,(x-3)/(x+1)=(x^2)/(x^2-1)` ĐKXĐ: `x\ne+-1`
`<=>((x-3)(x-1))/(x^2-1)=(x^2)/(x^2-1)`
`=>x^2-4x+3=x^2`
`<=>-4x=-3`
`<=>x=3/4(\text{tmđk})`
Vậy `S={3/4}`
`a) 2x-3=3(2x-3)+x+1`
`<=> 2x-3=6x-9+x+1`
`<=> 2x-3=7x-8`
`<=> 7x-2x=-3+8`
`<=> 5x=5`
`<=> x=1`
Vậy `S={1}`
`b) x(x+1)-(x+2)(x-3)=7`
`<=> x^2+x-(x^2-3x+2x-6)=7`
`<=> x^2+x-x^2+x+6=7`
`<=> 2x=1`
`<=> x=1/2`
Vậy `S={1/2}`
`c) (x-3)/(x+1)=(x^2)/(x^2-1)` (`x \ne +-1`)
`<=> ((x-3)(x-1))/((x+1)(x-1))=(x^2)/((x-1)(x+1))`
`=> x^2-x-3x+3=x^2`
`<=> x^2-x^2+4x=3`
`<=> 4x=3`
`<=> x=3/4` (TM)
Vậy `S={3/4}`