Giải giúp tớ hệ pt này với x+y+x ² +y ²=8 xy(x+1)(y+1)=12 03/10/2021 Bởi Emery Giải giúp tớ hệ pt này với x+y+x ² +y ²=8 xy(x+1)(y+1)=12
\[\begin{array}{l} \left\{ \begin{array}{l} x + y + {x^2} + {y^2} = 8\\ xy\left( {x + 1} \right)\left( {y + 1} \right) = 12 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x\left( {x + 1} \right) + y\left( {y + 1} \right) = 8\\ x\left( {x + 1} \right).y\left( {y + 1} \right) = 12 \end{array} \right.\,\,\,\left( I \right)\\ Dat\,\,\left\{ \begin{array}{l} x\left( {x + 1} \right) = u\\ y\left( {y + 1} \right) = v \end{array} \right.\,\,\,\left( {{u^2} \ge 4v} \right)\\ \Rightarrow \left( I \right) \Leftrightarrow \left\{ \begin{array}{l} u + v = 8\\ uv = 12 \end{array} \right.\\ \Rightarrow u,\,\,v\,\,\,la\,\,\,2\,\,nghiem\,\,\,cua\,\,pt:\,\,\,{t^2} – 8t + 12 = 0\\ \Leftrightarrow \left[ \begin{array}{l} t = 6\\ t = 2 \end{array} \right. \Rightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} u = 6\\ v = 2 \end{array} \right.\\ \left\{ \begin{array}{l} u = 2\\ v = 6 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x\left( {x + 1} \right) = 6\\ y\left( {y + 1} \right) = 2 \end{array} \right.\\ \left\{ \begin{array}{l} x\left( {x + 1} \right) = 2\\ y\left( {y + 1} \right) = 6 \end{array} \right. \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} {x^2} + x – 6 = 0\\ {y^2} + y – 2 = 0 \end{array} \right.\\ \left\{ \begin{array}{l} {x^2} + x – 2 = 0\\ {y^2} + y – 6 = 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} \left[ \begin{array}{l} x = 2\\ x = – 3 \end{array} \right.\\ \left[ \begin{array}{l} y = 1\\ y = – 2 \end{array} \right. \end{array} \right.\\ \left\{ \begin{array}{l} \left[ \begin{array}{l} x = 1\\ x = – 2 \end{array} \right.\\ \left[ \begin{array}{l} y = 2\\ y = – 3 \end{array} \right. \end{array} \right. \end{array} \right. \end{array}\] Em kết luận nghiệm nhé. Bình luận
$$\eqalign{ & \left\{ \matrix{ x + y + {x^2} + {y^2} = 8 \hfill \cr xy\left( {x + 1} \right)\left( {y + 1} \right) = 12 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{ x\left( {x + 1} \right) + y\left( {y + 1} \right) = 8 \hfill \cr x\left( {x + 1} \right)y\left( {y + 1} \right) = 12 \hfill \cr} \right. \cr & \Rightarrow x\left( {x + 1} \right)\,\,va\,\,y\left( {y + 1} \right)\,\,la\,\,nghiem\,\,cua\,\,pt \cr & {X^2} – 8X + 12 = 0 \Leftrightarrow \left[ \matrix{ X = 6 \hfill \cr X = 2 \hfill \cr} \right. \cr & TH1:\,\,\left\{ \matrix{ x\left( {x + 1} \right) = 6 \hfill \cr y\left( {y + 1} \right) = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ \left[ \matrix{ x = 2 \hfill \cr x = – 3 \hfill \cr} \right. \hfill \cr \left[ \matrix{ y = 1 \hfill \cr y = – 2 \hfill \cr} \right. \hfill \cr} \right. \cr & TH2:\,\,\left\{ \matrix{ x\left( {x + 1} \right) = 2 \hfill \cr y\left( {y + 1} \right) = 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ \left[ \matrix{ x = 1 \hfill \cr x = – 2 \hfill \cr} \right. \hfill \cr \left[ \matrix{ y = 2 \hfill \cr y = – 3 \hfill \cr} \right. \hfill \cr} \right. \cr & \Rightarrow S = \left\{ {\left( {2;1} \right);\left( {2; – 2} \right);\left( { – 3;1} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( {1; – 3} \right);\left( { – 2;2} \right);\left( { – 2; – 3} \right)} \right\} \cr} $$ Bình luận
\[\begin{array}{l}
\left\{ \begin{array}{l}
x + y + {x^2} + {y^2} = 8\\
xy\left( {x + 1} \right)\left( {y + 1} \right) = 12
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x\left( {x + 1} \right) + y\left( {y + 1} \right) = 8\\
x\left( {x + 1} \right).y\left( {y + 1} \right) = 12
\end{array} \right.\,\,\,\left( I \right)\\
Dat\,\,\left\{ \begin{array}{l}
x\left( {x + 1} \right) = u\\
y\left( {y + 1} \right) = v
\end{array} \right.\,\,\,\left( {{u^2} \ge 4v} \right)\\
\Rightarrow \left( I \right) \Leftrightarrow \left\{ \begin{array}{l}
u + v = 8\\
uv = 12
\end{array} \right.\\
\Rightarrow u,\,\,v\,\,\,la\,\,\,2\,\,nghiem\,\,\,cua\,\,pt:\,\,\,{t^2} – 8t + 12 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = 6\\
t = 2
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
u = 6\\
v = 2
\end{array} \right.\\
\left\{ \begin{array}{l}
u = 2\\
v = 6
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x\left( {x + 1} \right) = 6\\
y\left( {y + 1} \right) = 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x\left( {x + 1} \right) = 2\\
y\left( {y + 1} \right) = 6
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
{x^2} + x – 6 = 0\\
{y^2} + y – 2 = 0
\end{array} \right.\\
\left\{ \begin{array}{l}
{x^2} + x – 2 = 0\\
{y^2} + y – 6 = 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = 2\\
x = – 3
\end{array} \right.\\
\left[ \begin{array}{l}
y = 1\\
y = – 2
\end{array} \right.
\end{array} \right.\\
\left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = 1\\
x = – 2
\end{array} \right.\\
\left[ \begin{array}{l}
y = 2\\
y = – 3
\end{array} \right.
\end{array} \right.
\end{array} \right.
\end{array}\]
Em kết luận nghiệm nhé.
$$\eqalign{
& \left\{ \matrix{
x + y + {x^2} + {y^2} = 8 \hfill \cr
xy\left( {x + 1} \right)\left( {y + 1} \right) = 12 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x\left( {x + 1} \right) + y\left( {y + 1} \right) = 8 \hfill \cr
x\left( {x + 1} \right)y\left( {y + 1} \right) = 12 \hfill \cr} \right. \cr
& \Rightarrow x\left( {x + 1} \right)\,\,va\,\,y\left( {y + 1} \right)\,\,la\,\,nghiem\,\,cua\,\,pt \cr
& {X^2} – 8X + 12 = 0 \Leftrightarrow \left[ \matrix{
X = 6 \hfill \cr
X = 2 \hfill \cr} \right. \cr
& TH1:\,\,\left\{ \matrix{
x\left( {x + 1} \right) = 6 \hfill \cr
y\left( {y + 1} \right) = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x = 2 \hfill \cr
x = – 3 \hfill \cr} \right. \hfill \cr
\left[ \matrix{
y = 1 \hfill \cr
y = – 2 \hfill \cr} \right. \hfill \cr} \right. \cr
& TH2:\,\,\left\{ \matrix{
x\left( {x + 1} \right) = 2 \hfill \cr
y\left( {y + 1} \right) = 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x = 1 \hfill \cr
x = – 2 \hfill \cr} \right. \hfill \cr
\left[ \matrix{
y = 2 \hfill \cr
y = – 3 \hfill \cr} \right. \hfill \cr} \right. \cr
& \Rightarrow S = \left\{ {\left( {2;1} \right);\left( {2; – 2} \right);\left( { – 3;1} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( {1; – 3} \right);\left( { – 2;2} \right);\left( { – 2; – 3} \right)} \right\} \cr} $$