Giải giúp tớ hệ pt này với x+y+x ² +y ²=8 xy(x+1)(y+1)=12

Giải giúp tớ hệ pt này với
x+y+x ² +y ²=8
xy(x+1)(y+1)=12

0 bình luận về “Giải giúp tớ hệ pt này với x+y+x ² +y ²=8 xy(x+1)(y+1)=12”

  1. \[\begin{array}{l}
    \left\{ \begin{array}{l}
    x + y + {x^2} + {y^2} = 8\\
    xy\left( {x + 1} \right)\left( {y + 1} \right) = 12
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    x\left( {x + 1} \right) + y\left( {y + 1} \right) = 8\\
    x\left( {x + 1} \right).y\left( {y + 1} \right) = 12
    \end{array} \right.\,\,\,\left( I \right)\\
    Dat\,\,\left\{ \begin{array}{l}
    x\left( {x + 1} \right) = u\\
    y\left( {y + 1} \right) = v
    \end{array} \right.\,\,\,\left( {{u^2} \ge 4v} \right)\\
    \Rightarrow \left( I \right) \Leftrightarrow \left\{ \begin{array}{l}
    u + v = 8\\
    uv = 12
    \end{array} \right.\\
    \Rightarrow u,\,\,v\,\,\,la\,\,\,2\,\,nghiem\,\,\,cua\,\,pt:\,\,\,{t^2} – 8t + 12 = 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    t = 6\\
    t = 2
    \end{array} \right. \Rightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    u = 6\\
    v = 2
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    u = 2\\
    v = 6
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    x\left( {x + 1} \right) = 6\\
    y\left( {y + 1} \right) = 2
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    x\left( {x + 1} \right) = 2\\
    y\left( {y + 1} \right) = 6
    \end{array} \right.
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    {x^2} + x – 6 = 0\\
    {y^2} + y – 2 = 0
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    {x^2} + x – 2 = 0\\
    {y^2} + y – 6 = 0
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    \left\{ \begin{array}{l}
    \left[ \begin{array}{l}
    x = 2\\
    x = – 3
    \end{array} \right.\\
    \left[ \begin{array}{l}
    y = 1\\
    y = – 2
    \end{array} \right.
    \end{array} \right.\\
    \left\{ \begin{array}{l}
    \left[ \begin{array}{l}
    x = 1\\
    x = – 2
    \end{array} \right.\\
    \left[ \begin{array}{l}
    y = 2\\
    y = – 3
    \end{array} \right.
    \end{array} \right.
    \end{array} \right.
    \end{array}\]
    Em kết luận nghiệm nhé.

    Bình luận
  2. $$\eqalign{
    & \left\{ \matrix{
    x + y + {x^2} + {y^2} = 8 \hfill \cr
    xy\left( {x + 1} \right)\left( {y + 1} \right) = 12 \hfill \cr} \right. \cr
    & \Leftrightarrow \left\{ \matrix{
    x\left( {x + 1} \right) + y\left( {y + 1} \right) = 8 \hfill \cr
    x\left( {x + 1} \right)y\left( {y + 1} \right) = 12 \hfill \cr} \right. \cr
    & \Rightarrow x\left( {x + 1} \right)\,\,va\,\,y\left( {y + 1} \right)\,\,la\,\,nghiem\,\,cua\,\,pt \cr
    & {X^2} – 8X + 12 = 0 \Leftrightarrow \left[ \matrix{
    X = 6 \hfill \cr
    X = 2 \hfill \cr} \right. \cr
    & TH1:\,\,\left\{ \matrix{
    x\left( {x + 1} \right) = 6 \hfill \cr
    y\left( {y + 1} \right) = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    \left[ \matrix{
    x = 2 \hfill \cr
    x = – 3 \hfill \cr} \right. \hfill \cr
    \left[ \matrix{
    y = 1 \hfill \cr
    y = – 2 \hfill \cr} \right. \hfill \cr} \right. \cr
    & TH2:\,\,\left\{ \matrix{
    x\left( {x + 1} \right) = 2 \hfill \cr
    y\left( {y + 1} \right) = 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    \left[ \matrix{
    x = 1 \hfill \cr
    x = – 2 \hfill \cr} \right. \hfill \cr
    \left[ \matrix{
    y = 2 \hfill \cr
    y = – 3 \hfill \cr} \right. \hfill \cr} \right. \cr
    & \Rightarrow S = \left\{ {\left( {2;1} \right);\left( {2; – 2} \right);\left( { – 3;1} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( {1; – 3} \right);\left( { – 2;2} \right);\left( { – 2; – 3} \right)} \right\} \cr} $$

    Bình luận

Viết một bình luận