Giải hệ phương trình : {8 /(x-3) + 1/( 2|y|-3 ) =5 {4/( x-3) +1/( 2|y|-3)=3 04/11/2021 Bởi Emery Giải hệ phương trình : {8 /(x-3) + 1/( 2|y|-3 ) =5 {4/( x-3) +1/( 2|y|-3)=3
Đáp án: \(\left\{ \begin{array}{l}x = 5\\\left[ \begin{array}{l}y = 2\\y = – 2\end{array} \right.\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ne 3;y \ne \pm \frac{3}{2}\\\left\{ \begin{array}{l}\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\\\frac{4}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 3\end{array} \right.\\ \to \left\{ \begin{array}{l}\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\\ – \frac{4}{{x – 3}} – \frac{1}{{2\left| y \right| – 3}} = – 3\end{array} \right.\\ \to \left\{ \begin{array}{l}\frac{{8 – 4}}{{x – 3}} = 5 – 3\\\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\end{array} \right.\\ \to \left\{ \begin{array}{l}\frac{4}{{x – 3}} = 2\\\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\end{array} \right.\\ \to \left\{ \begin{array}{l}x – 3 = 2\\\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\end{array} \right.\\ \to \left\{ \begin{array}{l}x = 5\\\frac{8}{{5 – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\end{array} \right.\\ \to \left\{ \begin{array}{l}x = 5\\\frac{1}{{2\left| y \right| – 3}} = 5 – 4 = 1\end{array} \right.\\ \to \left\{ \begin{array}{l}x = 5\\2\left| y \right| – 3 = 1\end{array} \right.\\ \to \left\{ \begin{array}{l}x = 5\\2\left| y \right| = 4\end{array} \right.\\ \to \left\{ \begin{array}{l}x = 5\\\left[ \begin{array}{l}y = 2\\y = – 2\end{array} \right.\end{array} \right.\left( {TM} \right)\end{array}\) Bình luận
Đáp án:
\(\left\{ \begin{array}{l}
x = 5\\
\left[ \begin{array}{l}
y = 2\\
y = – 2
\end{array} \right.
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne 3;y \ne \pm \frac{3}{2}\\
\left\{ \begin{array}{l}
\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\\
\frac{4}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 3
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5\\
– \frac{4}{{x – 3}} – \frac{1}{{2\left| y \right| – 3}} = – 3
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\frac{{8 – 4}}{{x – 3}} = 5 – 3\\
\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\frac{4}{{x – 3}} = 2\\
\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x – 3 = 2\\
\frac{8}{{x – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
\frac{8}{{5 – 3}} + \frac{1}{{2\left| y \right| – 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
\frac{1}{{2\left| y \right| – 3}} = 5 – 4 = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
2\left| y \right| – 3 = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
2\left| y \right| = 4
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
\left[ \begin{array}{l}
y = 2\\
y = – 2
\end{array} \right.
\end{array} \right.\left( {TM} \right)
\end{array}\)