Giải hệ phương trình : $left { {{frac{x^2}{(y+1)^2}+frac{y^2}{(x+1)^2}=frac{2}{1}\3xy=x+y+1 } atop {}} ight.$ 12/09/2021 Bởi Aaliyah Giải hệ phương trình : $left { {{frac{x^2}{(y+1)^2}+frac{y^2}{(x+1)^2}=frac{2}{1}\3xy=x+y+1 } atop {}} ight.$
\(\begin{array}{l} \left\{ \begin{array}{l} \dfrac{{{x^2}}}{{{{(y + 1)}^2}}} + \dfrac{{{y^2}}}{{{{(x + 1)}^2}}} = 2(1)\\ 3xy = x + y + 1(2) \end{array} \right.\\ (1) \Leftrightarrow \dfrac{{{x^2}}}{{{{(y + 1)}^2}}} – 1 + \dfrac{{{y^2}}}{{{{(x + 1)}^2}}} – 1 = 0\\ \Leftrightarrow \left( {\dfrac{x}{{y + 1}} – 1} \right)\left( {\dfrac{x}{{y + 1}} + 1} \right) + \left( {\dfrac{y}{{x + 1}} – 1} \right)\left( {\dfrac{y}{{x + 1}} + 1} \right) = 0\\ \Leftrightarrow \dfrac{{x – y – 1}}{{y + 1}}\frac{{x + y + 1}}{{y + 1}} + \dfrac{{y – x – 1}}{{x + 1}}\dfrac{{y + x + 1}}{{x + 1}} = 0\\ \Leftrightarrow \left( {x + y + 1} \right)\left[ {\dfrac{{x – y – 1}}{{{{(y + 1)}^2}}} + \dfrac{{y – x – 1}}{{{{(x + 1)}^2}}}} \right] = 0\\ \Rightarrow \left[ \begin{array}{l} x + y + 1 = 0(*)\\ \dfrac{{x – y – 1}}{{{{(y + 1)}^2}}} + \dfrac{{y – x – 1}}{{{{(x + 1)}^2}}} = 0 \end{array} \right.(**) \end{array}\) Thay (*) vào (2) ta có: \(\begin{array}{l} (2) \Rightarrow 3xy = 0\\ \Rightarrow \left[ \begin{array}{l} x = 0\\ y = 0 \end{array} \right.\\ x = 1 \Rightarrow (1) \Rightarrow \dfrac{1}{{{{(y + 1)}^2}}} + \dfrac{{{y^2}}}{{{{(1 + 1)}^2}}} = 2\\ \Rightarrow 4 + {y^2}{(y + 1)^2} = 8{(y + 1)^2} \end{array}\) \( \Rightarrow (y + 2)({y^3} – 7x – 2) = 0\) Suy ra có 1 nghiệm y=2 Bình luận
\(\begin{array}{l}
\left\{ \begin{array}{l}
\dfrac{{{x^2}}}{{{{(y + 1)}^2}}} + \dfrac{{{y^2}}}{{{{(x + 1)}^2}}} = 2(1)\\
3xy = x + y + 1(2)
\end{array} \right.\\
(1) \Leftrightarrow \dfrac{{{x^2}}}{{{{(y + 1)}^2}}} – 1 + \dfrac{{{y^2}}}{{{{(x + 1)}^2}}} – 1 = 0\\
\Leftrightarrow \left( {\dfrac{x}{{y + 1}} – 1} \right)\left( {\dfrac{x}{{y + 1}} + 1} \right) + \left( {\dfrac{y}{{x + 1}} – 1} \right)\left( {\dfrac{y}{{x + 1}} + 1} \right) = 0\\
\Leftrightarrow \dfrac{{x – y – 1}}{{y + 1}}\frac{{x + y + 1}}{{y + 1}} + \dfrac{{y – x – 1}}{{x + 1}}\dfrac{{y + x + 1}}{{x + 1}} = 0\\
\Leftrightarrow \left( {x + y + 1} \right)\left[ {\dfrac{{x – y – 1}}{{{{(y + 1)}^2}}} + \dfrac{{y – x – 1}}{{{{(x + 1)}^2}}}} \right] = 0\\
\Rightarrow \left[ \begin{array}{l}
x + y + 1 = 0(*)\\
\dfrac{{x – y – 1}}{{{{(y + 1)}^2}}} + \dfrac{{y – x – 1}}{{{{(x + 1)}^2}}} = 0
\end{array} \right.(**)
\end{array}\)
Thay (*) vào (2) ta có:
\(\begin{array}{l}
(2) \Rightarrow 3xy = 0\\
\Rightarrow \left[ \begin{array}{l}
x = 0\\
y = 0
\end{array} \right.\\
x = 1 \Rightarrow (1) \Rightarrow \dfrac{1}{{{{(y + 1)}^2}}} + \dfrac{{{y^2}}}{{{{(1 + 1)}^2}}} = 2\\
\Rightarrow 4 + {y^2}{(y + 1)^2} = 8{(y + 1)^2}
\end{array}\)
\( \Rightarrow (y + 2)({y^3} – 7x – 2) = 0\)
Suy ra có 1 nghiệm y=2