giải phương trình : 1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) = 1/6 04/10/2021 Bởi Jasmine giải phương trình : 1/(x+1)(x+2) + 1/(x+2)(x+3) + 1/(x+3)(x+4) = 1/6
Đáp án:`S={2,-7}` Giải thích các bước giải: `1/((x+1)(x+2))+1/((x+2)(x+3))+1/((x+3)(x+4))=1/6(x ne -1,-2,-3,-4)` `<=>1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)=1/6` `<=>1/(x+1)-1/(x+4)=1/6` `<=>6(x+4)-6(x+1)=(x+1)(x+4)` `<=>18=x^2+5x+4` `<=>x^2+5x-14=0` `<=>x^2-2x+7x-14=0` `<=>x(x-2)+7(x-2)=0` `<=>(x-2)(x+7)=0` `+)x-2=0=>x=2` `+)x+7=0=>x=-7` Vậy `S={2,-7}` Bình luận
Điều kiện xác định $x\ne -1;-2;-3;-4$ $\dfrac{1}{(x+1)(x+2)}+\dfrac{1}{(x+2)(x+3)}+\dfrac{1}{(x+3)(x+4)}=\dfrac{1}{6}$ $\Rightarrow \dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}$ $\Rightarrow \dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}$ $\Rightarrow \dfrac{3}{(x+1)(x+4)}=\dfrac{1}{6}$ $\Rightarrow 18=(x+1)(x+4)$ $\Rightarrow x^2+5x-14=0$ $\Rightarrow (x+7)(x-2)=0\Rightarrow \left[ \begin{array}{l}x=2\\x=-7\end{array} \right.$ Bình luận
Đáp án:`S={2,-7}`
Giải thích các bước giải:
`1/((x+1)(x+2))+1/((x+2)(x+3))+1/((x+3)(x+4))=1/6(x ne -1,-2,-3,-4)`
`<=>1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)=1/6`
`<=>1/(x+1)-1/(x+4)=1/6`
`<=>6(x+4)-6(x+1)=(x+1)(x+4)`
`<=>18=x^2+5x+4`
`<=>x^2+5x-14=0`
`<=>x^2-2x+7x-14=0`
`<=>x(x-2)+7(x-2)=0`
`<=>(x-2)(x+7)=0`
`+)x-2=0=>x=2`
`+)x+7=0=>x=-7`
Vậy `S={2,-7}`
Điều kiện xác định $x\ne -1;-2;-3;-4$
$\dfrac{1}{(x+1)(x+2)}+\dfrac{1}{(x+2)(x+3)}+\dfrac{1}{(x+3)(x+4)}=\dfrac{1}{6}$
$\Rightarrow \dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$\Rightarrow \dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$\Rightarrow \dfrac{3}{(x+1)(x+4)}=\dfrac{1}{6}$
$\Rightarrow 18=(x+1)(x+4)$
$\Rightarrow x^2+5x-14=0$
$\Rightarrow (x+7)(x-2)=0\Rightarrow \left[ \begin{array}{l}x=2\\x=-7\end{array} \right.$