Giải phương trình: √10-3x = x-2 Giúp với! 29/07/2021 Bởi Kinsley Giải phương trình: √10-3x = x-2 Giúp với!
Đáp án: Giải thích các bước giải: $\sqrt{10-3x}=x-2 (x \leq \dfrac{10}{3})$ $⇔10-3x=(x-2)^2$ $⇔10-3x=x^2-4x+4$ $⇔x^2-4x+3x+4-10=0$ $⇔x^2-x-6=0$ $⇔x^2-3x+2x-6=0$ $⇔x(x-3)+2(x-3)=0$ $⇔(x+2)(x-3)=0$ $⇔\left[ \begin{array}{1}x+2=0\\x-3=0\end{array} \right.$ $⇔\left[ \begin{array}{1}x=-2 ™\\x=3(tm)\end{array} \right.$ Vậy tập nghiệm của phương trình là : $S=\{-2 ; 3\}$ Bình luận
Đáp án: \(\left[ \begin{array}{l}x =3TM\\x =-2TM\end{array} \right.\) Giải thích các bước giải: $\sqrt[]{10-3x}$ =x-2 ĐK: x≤$\frac{10}{3}$ ⇔($\sqrt[]{10-3x}$)² =(x-2)² ⇔10 -3x =x² -4x +4 ⇔x² -x -6=0 ⇔x² -3x +2x -6=0 ⇔x.(x-3)+ 2.(x-3)=0 ⇔(x-3).(x+2)= 0 ⇔\(\left[ \begin{array}{l}x -3=0\\x +2=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x =3TM\\x =-2TM\end{array} \right.\) Bình luận
Đáp án:
Giải thích các bước giải:
$\sqrt{10-3x}=x-2 (x \leq \dfrac{10}{3})$
$⇔10-3x=(x-2)^2$
$⇔10-3x=x^2-4x+4$
$⇔x^2-4x+3x+4-10=0$
$⇔x^2-x-6=0$
$⇔x^2-3x+2x-6=0$
$⇔x(x-3)+2(x-3)=0$
$⇔(x+2)(x-3)=0$
$⇔\left[ \begin{array}{1}x+2=0\\x-3=0\end{array} \right.$
$⇔\left[ \begin{array}{1}x=-2 ™\\x=3(tm)\end{array} \right.$
Vậy tập nghiệm của phương trình là : $S=\{-2 ; 3\}$
Đáp án:
\(\left[ \begin{array}{l}x =3TM\\x =-2TM\end{array} \right.\)
Giải thích các bước giải:
$\sqrt[]{10-3x}$ =x-2 ĐK: x≤$\frac{10}{3}$
⇔($\sqrt[]{10-3x}$)² =(x-2)²
⇔10 -3x =x² -4x +4
⇔x² -x -6=0
⇔x² -3x +2x -6=0
⇔x.(x-3)+ 2.(x-3)=0
⇔(x-3).(x+2)= 0
⇔\(\left[ \begin{array}{l}x -3=0\\x +2=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x =3TM\\x =-2TM\end{array} \right.\)