giải phương trình:(x+2/x+1)^2 + (x-2/x-1)^2 – 5/2(x^2-4/x^2-1) = 0

giải phương trình:(x+2/x+1)^2 + (x-2/x-1)^2 – 5/2(x^2-4/x^2-1) = 0

0 bình luận về “giải phương trình:(x+2/x+1)^2 + (x-2/x-1)^2 – 5/2(x^2-4/x^2-1) = 0”

  1. ĐK: $x \neq \pm 1$.

    Ta có

    $(\dfrac{x+2}{x+1})^2 + (\dfrac{x-2}{x-1})^2 – \dfrac{5}{2}(\dfrac{x^2-4}{x^2-1}) = 0$

    $<-> (\dfrac{x+2}{x+1})^2 + (\dfrac{x-2}{x-1})^2 – \dfrac{5}{2} (\dfrac{(x-2)(x+2)}{(x-1)(x+1)}) = 0$

    Ta đặt $a = \dfrac{x+2}{x+1}, b = \dfrac{x-2}{x-1}$. Khi đó ptrinh trở thành

    $a^2 + b^2 – \dfrac{5}{2} ab = 0$

    $<-> 2a^2 – 5ab + 2b^2 = 0$

    $<-> 2a^2 – 4ab – ab + 2b^2 = 0$

    $<-> 2a(a-2b) – b(a-2b) = 0$

    $<->(2a-b)(a-2b) = 0$

    Vậy $2a = b$ hoặc $a = 2b$

    TH1: $2a = b$

    Khi đó

    $2 \dfrac{x+2}{x+1} = \dfrac{x-2}{x-1}$

    $<-> 2(x+2)(x-1) = (x-2)(x+1)$

    $<-> 2(x^2 +x – 2) = x^2 -x -2$

    $<-> x^2 +3x -2 = 0$

    Vậy $x = \dfrac{-3\pm \sqrt{17}}{2}$

    TH2: $a = 2b$

    Khi đó

    $\dfrac{x+2}{x+1} = 2\dfrac{x-2}{x-1}$

    $<-> (x+2)(x-1) = 2(x-2)(x+1)$

    $<-> 2(x^2 -x – 2) = x^2 +x -2$

    $<-> x^2 -3x -2 = 0$

    Vạy $x = \dfrac{3 \pm \sqrt{17}}{2}$

    Bình luận

Viết một bình luận