giải phương trình (x+2)(x-3)=0 |x+6|=2x+9 21/10/2021 Bởi Mary giải phương trình (x+2)(x-3)=0 |x+6|=2x+9
`(x+2)(x-3)=0` `to`\(\left[ \begin{array}{l}x+2=0\\x-3=0\end{array} \right.\)` <=>`\(\left[ \begin{array}{l}x=-2\\x=3\end{array} \right.\) `tox={-2;3}` `|x+6|=2x+9` `to`\(\left[ \begin{array}{l}\text{+TH1: }x\geq 6\to x+6=2x+9\\\text{+TH2 : }x\leq6\to x+6=-2x-9\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x-2x=9-6\\x+2x=-9-6\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=-3(TM)\\x=-5(KTM)\end{array} \right.\) `->x=-3` Bình luận
$Bài$ $khá$ $hay!$ $(x+2)(x-3)=0$ $⇔\left[ \begin{array}{l}x+2=0\\x-3=0\end{array} \right.$$⇔\left[ \begin{array}{l}x=-2\\x=3\end{array} \right.$ $|x+6|=2x+9$ $Nếu$ $x>-6$ $⇒ x+6=2x+9$ $⇔ x-2x=9-6$ $⇔ -x=3$ $⇔ x=-3$ $Nếu$ $x<-6$ $⇒-x-6=2x+9$ $⇔ -x-2x=9+6$ $⇔ -3x=15$ $⇔ x=-5$ Bình luận
`(x+2)(x-3)=0`
`to`\(\left[ \begin{array}{l}x+2=0\\x-3=0\end{array} \right.\)` <=>`\(\left[ \begin{array}{l}x=-2\\x=3\end{array} \right.\)
`tox={-2;3}`
`|x+6|=2x+9`
`to`\(\left[ \begin{array}{l}\text{+TH1: }x\geq 6\to x+6=2x+9\\\text{+TH2 : }x\leq6\to x+6=-2x-9\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x-2x=9-6\\x+2x=-9-6\end{array} \right.\) `<=>`\(\left[ \begin{array}{l}x=-3(TM)\\x=-5(KTM)\end{array} \right.\)
`->x=-3`
$Bài$ $khá$ $hay!$
$(x+2)(x-3)=0$
$⇔\left[ \begin{array}{l}x+2=0\\x-3=0\end{array} \right.$$⇔\left[ \begin{array}{l}x=-2\\x=3\end{array} \right.$
$|x+6|=2x+9$
$Nếu$ $x>-6$
$⇒ x+6=2x+9$
$⇔ x-2x=9-6$
$⇔ -x=3$
$⇔ x=-3$
$Nếu$ $x<-6$
$⇒-x-6=2x+9$
$⇔ -x-2x=9+6$
$⇔ -3x=15$
$⇔ x=-5$