Giải phương trình: $x^{4}$$+x^{3}$$-9x^{2}$$+10x-8=0$ 06/11/2021 Bởi Raelynn Giải phương trình: $x^{4}$$+x^{3}$$-9x^{2}$$+10x-8=0$
$x^4+x^3-9x^2+10x-8=0$ $↔x^4-2x^3+3x^3-6x^2-3x^2+6x+4x-8=0$ $↔x^3(x-2)+3x^2(x-2)-3x(x-2)+4(x-2)=0$ $↔(x-2)(x^3+3x^2-3x+4)=0$ $↔(x-2)(x^3+4x^2-x^2-4x+x+4)=0$ $↔(x-2)[x^2(x+4)-x(x+4)+(x+4)]=0$ $↔(x-2)(x+4)(x^2-x+1)=0$ Vì $x^2-x+1=x^2-x+\dfrac14-\dfrac14+1=\left(x-\dfrac12 \right)^2+\dfrac34>0 \ ∀x$ $\to (x-2)(x+4)=0$ $↔\left[\begin{array}{l}x-2=0\\x+4=0\end{array}\right.↔\left[\begin{array}{l}x=2\\x=-4\end{array}\right.$ Vậy phương trình có tập nghiệm $S=\{-4;2\}$ Bình luận
Đáp án: \(\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\) Giải thích các bước giải: $x^4+x^3-9x^2+10x-8=0$ $⇔x^4+2x^3-8x^2-x^3-2x^2+8x+x^2+2x-8=0$ $⇔(x^4+2x^3-8x^2)-(x^3+2x^2-8x)+(x^2+2x-8)=0$ $⇔x^2.(x^2+2x-8)-x.(x^2+2x-8)+(x^2+2x-8)=0$ $⇔(x^2+2x-8).(x^2-x+1)=0$ $⇔[ (x^2+4x)-(2x+8)].[(x^2-2\dfrac{1}{2}x+\dfrac{1}{4})+\dfrac{3}{4}]=0$ $⇔[ x.(x+4)-2.(x+4)].[(x+\dfrac{1}{2})^2+\dfrac{3}{4}]=0$ $⇔(x+4).(x-2).[(x+\dfrac{1}{2})^2+\dfrac{3}{4}]=0$ $⇔\left[ \begin{array}{l}x-2=0\\x+4=0\\(x+\dfrac{1}{2})^2+\dfrac{3}{4}=0\end{array} \right.$ $⇔\left[ \begin{array}{l}x=2\\x=-4\\(x+\dfrac{1}{2})^2+\dfrac{3}{4}=0(vô lí)\end{array} \right.$ Bình luận
$x^4+x^3-9x^2+10x-8=0$
$↔x^4-2x^3+3x^3-6x^2-3x^2+6x+4x-8=0$
$↔x^3(x-2)+3x^2(x-2)-3x(x-2)+4(x-2)=0$
$↔(x-2)(x^3+3x^2-3x+4)=0$
$↔(x-2)(x^3+4x^2-x^2-4x+x+4)=0$
$↔(x-2)[x^2(x+4)-x(x+4)+(x+4)]=0$
$↔(x-2)(x+4)(x^2-x+1)=0$
Vì $x^2-x+1=x^2-x+\dfrac14-\dfrac14+1=\left(x-\dfrac12 \right)^2+\dfrac34>0 \ ∀x$
$\to (x-2)(x+4)=0$
$↔\left[\begin{array}{l}x-2=0\\x+4=0\end{array}\right.↔\left[\begin{array}{l}x=2\\x=-4\end{array}\right.$
Vậy phương trình có tập nghiệm $S=\{-4;2\}$
Đáp án:
\(\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\)
Giải thích các bước giải:
$x^4+x^3-9x^2+10x-8=0$
$⇔x^4+2x^3-8x^2-x^3-2x^2+8x+x^2+2x-8=0$
$⇔(x^4+2x^3-8x^2)-(x^3+2x^2-8x)+(x^2+2x-8)=0$
$⇔x^2.(x^2+2x-8)-x.(x^2+2x-8)+(x^2+2x-8)=0$
$⇔(x^2+2x-8).(x^2-x+1)=0$
$⇔[ (x^2+4x)-(2x+8)].[(x^2-2\dfrac{1}{2}x+\dfrac{1}{4})+\dfrac{3}{4}]=0$
$⇔[ x.(x+4)-2.(x+4)].[(x+\dfrac{1}{2})^2+\dfrac{3}{4}]=0$
$⇔(x+4).(x-2).[(x+\dfrac{1}{2})^2+\dfrac{3}{4}]=0$
$⇔\left[ \begin{array}{l}x-2=0\\x+4=0\\(x+\dfrac{1}{2})^2+\dfrac{3}{4}=0\end{array} \right.$
$⇔\left[ \begin{array}{l}x=2\\x=-4\\(x+\dfrac{1}{2})^2+\dfrac{3}{4}=0(vô lí)\end{array} \right.$