Giải phương trình (x+4)(5x-1)>5x^2 +18+2 29/08/2021 Bởi Quinn Giải phương trình (x+4)(5x-1)>5x^2 +18+2
$#Dino$ `(x+4)(5x-1)>5x²+18+2` `⇔5x²-x+20x-4>5x²+18+2` `⇔5x²-5x²-x+20x-18x-4-2>0` `⇔x>6` Vậy BPT có nghiệm là `x>6` Bình luận
Đáp án + Giải thích các bước giải: `(x+4)(5x-1)>5x^{2}+18x+2` `<=>5x^{2}+20x-x-4>5x^{2}+18x+2` `<=>5x^{2}+19x-4>5x^{2}+18x+2` `<=>5x^{2}-5x^{2}+19x-18x>4+2` `<=>x>6` Vậy tập nghiệm của bất phương trình là : `x>6` Bình luận
$#Dino$
`(x+4)(5x-1)>5x²+18+2`
`⇔5x²-x+20x-4>5x²+18+2`
`⇔5x²-5x²-x+20x-18x-4-2>0`
`⇔x>6`
Vậy BPT có nghiệm là `x>6`
Đáp án + Giải thích các bước giải:
`(x+4)(5x-1)>5x^{2}+18x+2`
`<=>5x^{2}+20x-x-4>5x^{2}+18x+2`
`<=>5x^{2}+19x-4>5x^{2}+18x+2`
`<=>5x^{2}-5x^{2}+19x-18x>4+2`
`<=>x>6`
Vậy tập nghiệm của bất phương trình là : `x>6`