Giải phương trình : a,|x^2-4| + |x| = 2 b,|x – 1|+ | 2x+3 | = 1 21/09/2021 Bởi Ivy Giải phương trình : a,|x^2-4| + |x| = 2 b,|x – 1|+ | 2x+3 | = 1
Đáp án: b. \(\left[ \begin{array}{l}x = – \dfrac{1}{3}\\x = – 1\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a.\left| {{x^2} – 4} \right| + \left| x \right| = 2\\ \to {\left( {{x^2} – 4} \right)^2} + 2x\left( {{x^2} – 4} \right) + {x^2} = 4\\ \to {x^4} – 8{x^2} + 16 + 2{x^3} – 8x + {x^2} = 4\\ \to {x^4} + 2{x^3} – 7{x^2} – 8x + 12 = 0\\ \to {x^4} – {x^3} + 3{x^3} – 3{x^2} – 4{x^2} + 4x – 12x + 12 = 0\\ \to {x^3}\left( {x – 1} \right) + 3{x^2}\left( {x – 1} \right) – 4x\left( {x – 1} \right) – 12\left( {x – 1} \right) = 0\\ \to \left( {x – 1} \right) + \left( {{x^3} + 3{x^2} – 4x – 12} \right) = 0\\ \to \left[ \begin{array}{l}x – 1 = 0\\{x^3} + 3{x^2} – 4x – 12 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\{x^3} + 2{x^2} + {x^2} + 2x – 6x – 12 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\{x^2}\left( {x + 2} \right) + x\left( {x + 2} \right) – 6\left( {x + 2} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\x + 2 = 0\\{x^2} + x – 6 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\x = – 2\\\left( {x – 2} \right)\left( {x + 3} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\x = – 2\\x = 2\\x = – 3\end{array} \right.\\b.{\left( {x – 1} \right)^2} + 2\left( {x – 1} \right)\left( {2x + 3} \right) + {\left( {2x + 3} \right)^2} = 1\\ \to {x^2} – 2x + 1 + 4{x^2} + 2x – 6 + 4{x^2} + 12x + 9 = 1\\ \to 9{x^2} + 12x + 3 = 0\\ \to \left( {3x + 1} \right)\left( {x + 1} \right) = 0\\ \to \left[ \begin{array}{l}x = – \dfrac{1}{3}\\x = – 1\end{array} \right.\end{array}\) Bình luận
Đáp án:
b. \(\left[ \begin{array}{l}
x = – \dfrac{1}{3}\\
x = – 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a.\left| {{x^2} – 4} \right| + \left| x \right| = 2\\
\to {\left( {{x^2} – 4} \right)^2} + 2x\left( {{x^2} – 4} \right) + {x^2} = 4\\
\to {x^4} – 8{x^2} + 16 + 2{x^3} – 8x + {x^2} = 4\\
\to {x^4} + 2{x^3} – 7{x^2} – 8x + 12 = 0\\
\to {x^4} – {x^3} + 3{x^3} – 3{x^2} – 4{x^2} + 4x – 12x + 12 = 0\\
\to {x^3}\left( {x – 1} \right) + 3{x^2}\left( {x – 1} \right) – 4x\left( {x – 1} \right) – 12\left( {x – 1} \right) = 0\\
\to \left( {x – 1} \right) + \left( {{x^3} + 3{x^2} – 4x – 12} \right) = 0\\
\to \left[ \begin{array}{l}
x – 1 = 0\\
{x^3} + 3{x^2} – 4x – 12 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
{x^3} + 2{x^2} + {x^2} + 2x – 6x – 12 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
{x^2}\left( {x + 2} \right) + x\left( {x + 2} \right) – 6\left( {x + 2} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x + 2 = 0\\
{x^2} + x – 6 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x = – 2\\
\left( {x – 2} \right)\left( {x + 3} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x = – 2\\
x = 2\\
x = – 3
\end{array} \right.\\
b.{\left( {x – 1} \right)^2} + 2\left( {x – 1} \right)\left( {2x + 3} \right) + {\left( {2x + 3} \right)^2} = 1\\
\to {x^2} – 2x + 1 + 4{x^2} + 2x – 6 + 4{x^2} + 12x + 9 = 1\\
\to 9{x^2} + 12x + 3 = 0\\
\to \left( {3x + 1} \right)\left( {x + 1} \right) = 0\\
\to \left[ \begin{array}{l}
x = – \dfrac{1}{3}\\
x = – 1
\end{array} \right.
\end{array}\)