Giải phương trình a)cos(x+30°)=cos2x b)cos(x-13pi/8)=✓2/2

Giải phương trình
a)cos(x+30°)=cos2x
b)cos(x-13pi/8)=✓2/2

0 bình luận về “Giải phương trình a)cos(x+30°)=cos2x b)cos(x-13pi/8)=✓2/2”

  1. Đáp án:

     $a,$

    \(\left[ \begin{array}{l}-x=-30^0+k2\pi\\x=-10^0+\frac{k2\pi}{3}\end{array} \right.\) $k∈Z$

    $b,$

    \(\left[ \begin{array}{l}x=\frac{15\pi}{8}+k2\pi\\x=\frac{11\pi}{8}+k2\pi\end{array} \right.\) $k∈Z$

    Giải thích các bước giải:

    $a, cos(x^{}+30^0)=cos2x$ 

    ⇔\(\left[ \begin{array}{l}x+30^0=2x+k2\pi\\x+30^0=-2x+k2\pi\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}-x=-30^0+k2\pi\\x=-10^0+\frac{k2\pi}{3}\end{array} \right.\) $k∈Z$

    $b, cos(x^{}-\frac{13\pi}{8})=$ $\frac{\sqrt2}{2}$

    ⇔$cos(x^{}-\frac{13\pi}{8})=cos\frac{\pi}{4}$ 

    ⇔\(\left[ \begin{array}{l}x-\frac{13\pi}{8}=\frac{\pi}{4}+k2\pi\\x-\frac{13\pi}{8}=\frac{\pi}{4}+k2\pi\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=\frac{15\pi}{8}+k2\pi\\x=\frac{11\pi}{8}+k2\pi\end{array} \right.\) $k∈Z$

    Bình luận
  2. a) $cos(x+30^o)=cos2x$

    $↔ \left[ \begin{array}{l}x+30^o=2x+k2\pi\\x+30^o=-2x+k2\pi\end{array} \right.$

    $↔ \left[ \begin{array}{l}x=30^o-k2\pi\\x=-10^o+\dfrac{k2\pi}{3}\end{array} \right.$

    b) $cos(x-\dfrac{13\pi}{8})=\dfrac{\sqrt[]{2}}{2}$

    $↔ cos(x-\dfrac{13\pi}{8})=cos\dfrac{\pi}{4}$

    $↔ \left[ \begin{array}{l}x-\dfrac{13\pi}{8}=\dfrac{\pi}{4}+k2\pi\\x-\dfrac{13\pi}{8}=-\dfrac{\pi}{4}+k2\pi\end{array} \right.$

    $↔ \left[ \begin{array}{l}x=\dfrac{15\pi}{8}+k2\pi\\x=\dfrac{11\pi}{8}+k2\pi\end{array} \right.$

     

    Bình luận

Viết một bình luận