Giải phương trình a, $\sqrt[]{2-x}$ +$\sqrt[]{2+x}$ + 3$\sqrt[]{4-x^{2}}$ = 2 b, 2($x^{2}$+2)=5($x^{3}$ +1) 12/08/2021 Bởi Jade Giải phương trình a, $\sqrt[]{2-x}$ +$\sqrt[]{2+x}$ + 3$\sqrt[]{4-x^{2}}$ = 2 b, 2($x^{2}$+2)=5($x^{3}$ +1)
Đáp án: $a)x=±2$ `b)x=\frac{5±\sqrt{37}}{2}` Giải thích các bước giải: $a)ĐKXĐ:-2≤x≤2$ $\sqrt{2-x}+\sqrt{2+x}+3\sqrt{4-x^2}=2$ $⇔\sqrt{2-x}+\sqrt{2+x}=2-3\sqrt{4-x^2}$ $⇔(2-x)+(2+x)+2\sqrt{2-x}.\sqrt{2+x}=4+9(4-x^2)-12\sqrt{4-x^2}$ $(ĐK:\left[ \begin{array}{l}-2≤x≤\frac{-\sqrt{7}}{2}\\\frac{\sqrt{7}}{2}≤x≤2\end{array} \right.)$ $⇔2\sqrt{4-x^2}=9(4-x^2)-12\sqrt{4-x^2}$ $⇔9(4-x^2)-14\sqrt{4-x^2}=0$ $⇔\sqrt{4-x^2}(9\sqrt{4-x^2}-14)=0$ $⇔\left[ \begin{array}{l}\sqrt{4-x^2}=0(1)\\9\sqrt{4-x^2}-14=0(2)\end{array} \right.$ $\text{Ta có:}$ $(1)⇔4-x^2=0⇔x^2=4⇔x=±2$ $\text{(thỏa mãn ĐKXĐ)}$ `(2)⇔\sqrt{4-x^2}=\frac{14}{9}` `⇔4-x^2=\frac{196}{81}` `⇔x^2=\frac{128}{81}` `⇔x=±\frac{8\sqrt{2}}{9}` $\text{(không thỏa mãn ĐKXĐ)}$ $\text{Vậy phương trình có nghiệm x=±2}$ $b)ĐKXĐ:x≥-1$ $\text{Đặt}$$\sqrt{x+1}=a;\sqrt{x^2-x+1}=b(a≥0;b>0)$ $⇒x+1=a^2;x^2-x+1=b^2$ $\text{Ta có:}$ $2[(x^2-x+1)+(x+1)]=5.\sqrt{x+1}.\sqrt{x^2-x+1}$ $⇔2(a^2+b^2)=5ab$ $⇔2a^2-5ab+2b^2=0$ $⇔(2a-b)(a-2b)=0$ $⇔\left[ \begin{array}{l}2a-b=0(3)\\a-2b=0(4)\end{array} \right.$ $\text{Ta có:}$ $(3)⇔2a=b$ $⇔2\sqrt{x+1}=\sqrt{x^2-x+1}$ $⇔\sqrt{4x+4}=\sqrt{x^2-x+1}$ $⇔4x+4=x^2-x+1$ $⇔x^2-5x-3=0$ `⇔(x^2-2.x.\frac{5}{2}+\frac{25}{4})-\frac{37}{4}=0` `⇔(x-\frac{5}{2})^2=\frac{37}{4}` `⇔x-\frac{5}{2}=\frac{±\sqrt{37}}{2}` `⇔x=\frac{5±\sqrt{37}}{2}` $\text{(thỏa mãn ĐKXĐ)}$ $(4)⇔a=2b$ $⇔\sqrt{x+1}=2\sqrt{x^2-x+1}$ $⇔\sqrt{x+1}=\sqrt{4x^2-4x+4}$ $⇔x+1=4x^2-4x+4$ $⇔4x^2-5x+3=0$ `⇔(4x^2-2.2x.\frac{5}{4}+\frac{25}{16})+\frac{23}{16}=0` `⇔(2x-\frac{5}{4})^2=\frac{-23}{16}` $\text{(vô lý)}$ Bình luận
Đáp án: $a)x=±2$
`b)x=\frac{5±\sqrt{37}}{2}`
Giải thích các bước giải:
$a)ĐKXĐ:-2≤x≤2$
$\sqrt{2-x}+\sqrt{2+x}+3\sqrt{4-x^2}=2$
$⇔\sqrt{2-x}+\sqrt{2+x}=2-3\sqrt{4-x^2}$
$⇔(2-x)+(2+x)+2\sqrt{2-x}.\sqrt{2+x}=4+9(4-x^2)-12\sqrt{4-x^2}$
$(ĐK:\left[ \begin{array}{l}-2≤x≤\frac{-\sqrt{7}}{2}\\\frac{\sqrt{7}}{2}≤x≤2\end{array} \right.)$
$⇔2\sqrt{4-x^2}=9(4-x^2)-12\sqrt{4-x^2}$
$⇔9(4-x^2)-14\sqrt{4-x^2}=0$
$⇔\sqrt{4-x^2}(9\sqrt{4-x^2}-14)=0$
$⇔\left[ \begin{array}{l}\sqrt{4-x^2}=0(1)\\9\sqrt{4-x^2}-14=0(2)\end{array} \right.$
$\text{Ta có:}$
$(1)⇔4-x^2=0⇔x^2=4⇔x=±2$ $\text{(thỏa mãn ĐKXĐ)}$
`(2)⇔\sqrt{4-x^2}=\frac{14}{9}`
`⇔4-x^2=\frac{196}{81}`
`⇔x^2=\frac{128}{81}`
`⇔x=±\frac{8\sqrt{2}}{9}` $\text{(không thỏa mãn ĐKXĐ)}$
$\text{Vậy phương trình có nghiệm x=±2}$
$b)ĐKXĐ:x≥-1$
$\text{Đặt}$$\sqrt{x+1}=a;\sqrt{x^2-x+1}=b(a≥0;b>0)$
$⇒x+1=a^2;x^2-x+1=b^2$
$\text{Ta có:}$
$2[(x^2-x+1)+(x+1)]=5.\sqrt{x+1}.\sqrt{x^2-x+1}$
$⇔2(a^2+b^2)=5ab$
$⇔2a^2-5ab+2b^2=0$
$⇔(2a-b)(a-2b)=0$
$⇔\left[ \begin{array}{l}2a-b=0(3)\\a-2b=0(4)\end{array} \right.$
$\text{Ta có:}$
$(3)⇔2a=b$
$⇔2\sqrt{x+1}=\sqrt{x^2-x+1}$
$⇔\sqrt{4x+4}=\sqrt{x^2-x+1}$
$⇔4x+4=x^2-x+1$
$⇔x^2-5x-3=0$
`⇔(x^2-2.x.\frac{5}{2}+\frac{25}{4})-\frac{37}{4}=0`
`⇔(x-\frac{5}{2})^2=\frac{37}{4}`
`⇔x-\frac{5}{2}=\frac{±\sqrt{37}}{2}`
`⇔x=\frac{5±\sqrt{37}}{2}` $\text{(thỏa mãn ĐKXĐ)}$
$(4)⇔a=2b$
$⇔\sqrt{x+1}=2\sqrt{x^2-x+1}$
$⇔\sqrt{x+1}=\sqrt{4x^2-4x+4}$
$⇔x+1=4x^2-4x+4$
$⇔4x^2-5x+3=0$
`⇔(4x^2-2.2x.\frac{5}{4}+\frac{25}{16})+\frac{23}{16}=0`
`⇔(2x-\frac{5}{4})^2=\frac{-23}{16}` $\text{(vô lý)}$