Giải phương trình : cos6x * cos2x =sin7* sin3x 20/08/2021 Bởi Piper Giải phương trình : cos6x * cos2x =sin7* sin3x
Đáp án: $$\left[\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.$$ Giải thích các bước giải: $\cos6x.\cos2x=\sin7x.\sin3x$ $\Leftrightarrow \dfrac{1}{2}\Big( \cos8x+\cos4x\Big)=\dfrac{-1}{2}\Big(\cos10x-\cos4x\Big)$ $\Leftrightarrow \cos8x+\cos4x=-\cos10x+\cos4x$ $\Leftrightarrow \cos10x+\cos8x=0$ $\Leftrightarrow 2\cos9x.\cos x=0$ $\Leftrightarrow $ $$\left[\begin{matrix}\cos9x=0\\\cos x=0\end{matrix}\right.$$ $\Leftrightarrow$ $$\left[\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.$$ Bình luận
Đáp án: \(\left[ {\begin{array}{*{20}c} {x = \frac{\pi }{{18}} + \frac{{k\pi }}{9}} \\ {x = \frac{\pi }{2} – l\pi } \\\end{array}} \right.\) Giải thích các bước giải: Theo bài ra ta có: \(\begin{array}{l} \cos 6x.\cos 2x = \sin 7x.\sin 3x \\ \Leftrightarrow \frac{1}{2}\left( {\cos (6x + 2x) + \cos (6x – 2x)} \right) = \frac{1}{2}(\cos (7x – 3x) – c{\rm{os}}(7x + 3x)) \\ \Leftrightarrow c{\rm{os}}8x + \cos 4x = c{\rm{os}}4x – c{\rm{os}}10x \\ \Leftrightarrow \cos 8x = – \cos 10x = \cos (\pi – 10x) \\ \Leftrightarrow \left[ {\begin{array}{*{20}c} {8x = \pi – 10x + k2\pi } \\ {8x = 10x – \pi + l2\pi } \\\end{array}} \right. \\ \Leftrightarrow \left[ {\begin{array}{*{20}c} {18x = \pi + k2\pi } \\ {2x = \pi – l2\pi } \\\end{array}} \right. \\ \Leftrightarrow \left[ {\begin{array}{*{20}c} {x = \frac{\pi }{{18}} + \frac{{k\pi }}{9}} \\ {x = \frac{\pi }{2} – l\pi } \\\end{array}} \right. \\ \end{array}\) Bình luận
Đáp án: $$\left[\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.$$
Giải thích các bước giải:
$\cos6x.\cos2x=\sin7x.\sin3x$
$\Leftrightarrow \dfrac{1}{2}\Big( \cos8x+\cos4x\Big)=\dfrac{-1}{2}\Big(\cos10x-\cos4x\Big)$
$\Leftrightarrow \cos8x+\cos4x=-\cos10x+\cos4x$
$\Leftrightarrow \cos10x+\cos8x=0$
$\Leftrightarrow 2\cos9x.\cos x=0$
$\Leftrightarrow $ $$\left[\begin{matrix}\cos9x=0\\\cos x=0\end{matrix}\right.$$
$\Leftrightarrow$ $$\left[\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{9}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.$$
Đáp án:
\(
\left[ {\begin{array}{*{20}c}
{x = \frac{\pi }{{18}} + \frac{{k\pi }}{9}} \\
{x = \frac{\pi }{2} – l\pi } \\
\end{array}} \right.
\)
Giải thích các bước giải:
Theo bài ra ta có:
\(
\begin{array}{l}
\cos 6x.\cos 2x = \sin 7x.\sin 3x \\
\Leftrightarrow \frac{1}{2}\left( {\cos (6x + 2x) + \cos (6x – 2x)} \right) = \frac{1}{2}(\cos (7x – 3x) – c{\rm{os}}(7x + 3x)) \\
\Leftrightarrow c{\rm{os}}8x + \cos 4x = c{\rm{os}}4x – c{\rm{os}}10x \\
\Leftrightarrow \cos 8x = – \cos 10x = \cos (\pi – 10x) \\
\Leftrightarrow \left[ {\begin{array}{*{20}c}
{8x = \pi – 10x + k2\pi } \\
{8x = 10x – \pi + l2\pi } \\
\end{array}} \right. \\
\Leftrightarrow \left[ {\begin{array}{*{20}c}
{18x = \pi + k2\pi } \\
{2x = \pi – l2\pi } \\
\end{array}} \right. \\
\Leftrightarrow \left[ {\begin{array}{*{20}c}
{x = \frac{\pi }{{18}} + \frac{{k\pi }}{9}} \\
{x = \frac{\pi }{2} – l\pi } \\
\end{array}} \right. \\
\end{array}
\)