* Giải phương trình : $\frac{x-1}{13}$ – $\frac{2x-13}{15}$ = $\frac{3x-15}{27}$ – $\frac{4x-27}{29}$ 02/10/2021 Bởi Vivian * Giải phương trình : $\frac{x-1}{13}$ – $\frac{2x-13}{15}$ = $\frac{3x-15}{27}$ – $\frac{4x-27}{29}$
Đáp án: `S=\{14\}` Giải thích các bước giải: `\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}` `<=>\frac{x-1}{13}-\frac{2x-13}{15}-1+1=\frac{3x-15}{27}-\frac{4x-27}{29}-1+1` `<=>(\frac{x-1}{13}-1)-(\frac{2x-13}{15}-1)=(\frac{3x-15}{27}-1)-(\frac{4x-27}{29}-1)` `<=>\frac{x-1-13}{13}-\frac{2x-13-15}{15}=\frac{3x-15-27}{27}-\frac{4x-27-29}{29}` `<=>\frac{x-14}{13}-\frac{2(x-14)}{15}=\frac{3(x-14)}{27}-\frac{4(x-14)}{29}` `<=>\frac{x-14}{13}-\frac{2(x-14)}{15}-\frac{3(x-14)}{27}+\frac{4(x-14)}{29}=0` `<=>(x-14)(1/13-2/15-3/27+4/29)=0` `<=>x-14=0(`Do`1/13-2/15-3/27+4/29\ne 0)` `<=>x=14` Vậy `S=\{14\}` Bình luận
$\begin{array}{l}\dfrac{{x – 1}}{{13}} – \dfrac{{2x – 13}}{{15}} = \dfrac{{3x – 15}}{{27}} – \dfrac{{4x – 27}}{{29}}\\ \Leftrightarrow \left( {\dfrac{{x – 1}}{{13}} – 1} \right) – \left( {\dfrac{{2x – 13}}{{15}} – 1} \right) = \left( {\dfrac{{3x – 15}}{{27}} – 1} \right) – \left( {\dfrac{{4x – 27}}{{29}} – 1} \right)\\ \Leftrightarrow \dfrac{{x – 14}}{{13}} – \dfrac{{2\left( {x – 14} \right)}}{{15}} – \dfrac{{3\left( {x – 14} \right)}}{{27}} + \dfrac{{4\left( {x – 14} \right)}}{{29}} = 0\\ \Leftrightarrow \left( {x – 14} \right)\left( {\underbrace {\dfrac{1}{{13}} – \dfrac{2}{{15}} – \dfrac{3}{{27}} + \dfrac{4}{{29}}}_{ < 0}} \right) = 0\\ \Leftrightarrow x = 14\end{array}$ Bình luận
Đáp án:
`S=\{14\}`
Giải thích các bước giải:
`\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}`
`<=>\frac{x-1}{13}-\frac{2x-13}{15}-1+1=\frac{3x-15}{27}-\frac{4x-27}{29}-1+1`
`<=>(\frac{x-1}{13}-1)-(\frac{2x-13}{15}-1)=(\frac{3x-15}{27}-1)-(\frac{4x-27}{29}-1)`
`<=>\frac{x-1-13}{13}-\frac{2x-13-15}{15}=\frac{3x-15-27}{27}-\frac{4x-27-29}{29}`
`<=>\frac{x-14}{13}-\frac{2(x-14)}{15}=\frac{3(x-14)}{27}-\frac{4(x-14)}{29}`
`<=>\frac{x-14}{13}-\frac{2(x-14)}{15}-\frac{3(x-14)}{27}+\frac{4(x-14)}{29}=0`
`<=>(x-14)(1/13-2/15-3/27+4/29)=0`
`<=>x-14=0(`Do`1/13-2/15-3/27+4/29\ne 0)`
`<=>x=14`
Vậy `S=\{14\}`
$\begin{array}{l}
\dfrac{{x – 1}}{{13}} – \dfrac{{2x – 13}}{{15}} = \dfrac{{3x – 15}}{{27}} – \dfrac{{4x – 27}}{{29}}\\
\Leftrightarrow \left( {\dfrac{{x – 1}}{{13}} – 1} \right) – \left( {\dfrac{{2x – 13}}{{15}} – 1} \right) = \left( {\dfrac{{3x – 15}}{{27}} – 1} \right) – \left( {\dfrac{{4x – 27}}{{29}} – 1} \right)\\
\Leftrightarrow \dfrac{{x – 14}}{{13}} – \dfrac{{2\left( {x – 14} \right)}}{{15}} – \dfrac{{3\left( {x – 14} \right)}}{{27}} + \dfrac{{4\left( {x – 14} \right)}}{{29}} = 0\\
\Leftrightarrow \left( {x – 14} \right)\left( {\underbrace {\dfrac{1}{{13}} – \dfrac{2}{{15}} – \dfrac{3}{{27}} + \dfrac{4}{{29}}}_{ < 0}} \right) = 0\\
\Leftrightarrow x = 14
\end{array}$