Giải phương trình: $\frac{\sqrt[]{x – 2009} – 1}{x – 2009}$ + $\frac{\sqrt[]{y – 2010} – 1}{y – 2010}$ + $\frac{\sqrt[]{z – 2011} – 1}{z – 2011}$ = $\frac{3}{4}$
Giải phương trình: $\frac{\sqrt[]{x – 2009} – 1}{x – 2009}$ + $\frac{\sqrt[]{y – 2010} – 1}{y – 2010}$ + $\frac{\sqrt[]{z – 2011} – 1}{z – 2011}$ = $\frac{3}{4}$
Đáp án:
`(\sqrt{x – 2009} – 1)/(x – 2009) + (\sqrt{y – 2010} – 1)/(y – 2020) + (\sqrt{z – 2011} – 1)/(z – 2011) = 3/4`
Đặt : `\sqrt{x – 2019} = a`
`\sqrt{y – 2010} = b`
`\sqrt{z – 2011} = c`
phương trinh sẽ thành :
`(a – 1)/a^2 + (b – 1)/b^2 + (c – 1)/c^2 = 3/4`
`<=> 1/a – 1/a^2 + 1/b – 1/b^2 + 1/c – 1/c^2 = 3/4`
`<=> 1/a – 1/a^2 + 1/b – 1/b^2 + 1/c – 1/c^2 – 3/4 = 0`
`<=> (1/a^2 – 2. 1/a . 1/2 + 1/4) + (1/b^2 – 2. 1/b . 1/2 + 1/4) + (1/c^2 – 2 . 1/c . 1/2 + 1/4) = 0`
`<=> (1/a – 1/2)^2 + (1/b – 1/2)^2 + (1/c – 1/2)^2 = 0`
Do ` (1/a – 1/2)^2 ≥ 0`
`(1/b – 1/2)^2 ≥ 0`
`(1/c – 1/2)^2 ≥ 0`
`=> (1/a – 1/2)^2 + (1/b – 1/2)^2 + (1/c – 1/2)^2 ≥ 0`
Dấu “=” xẩy ra
<=> $\left[ \begin{array}{l}\dfrac{1}{a} – \dfrac{1}{2} = 0 \\\dfrac{1}{b} – \dfrac{1}{2} = 0\\\dfrac{1}{c} – \dfrac{1}{2} = 0\end{array} \right.$
<=>$ \left[ \begin{array}{l}\\\sqrt{x – 2009} = 2\\\sqrt{y – 2010} = 2\\\sqrt{z – 2011} = 2\end{array} \right.$
<=>$ \left[ \begin{array}{l}x =2013\\b= 2014\\z = 2015\end{array} \right.$
Giải thích các bước giải: