giải phương trình lượng giác sau
a) $\frac{\sqrt[]{3} }{2}$ cos4x + $\frac{1}{2}$sin4x = $\frac{\sqrt[]{3} }{2}$
b) sin2x – cos2x = -1
giải phương trình lượng giác sau
a) $\frac{\sqrt[]{3} }{2}$ cos4x + $\frac{1}{2}$sin4x = $\frac{\sqrt[]{3} }{2}$
b) sin2x – cos2x = -1
Bạn xem hình
Đáp án:
$\begin{array}{l}
a)\dfrac{{\sqrt 3 }}{2}.\cos 4x + \dfrac{1}{2}.\sin 4x = \dfrac{{\sqrt 3 }}{2}\\
\Rightarrow \cos \dfrac{\pi }{6}.\cos 4x + \sin \dfrac{\pi }{6}.\sin 4x = \dfrac{{\sqrt 3 }}{2}\\
\Rightarrow \cos \left( {4x – \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{6}\\
\Rightarrow \left[ \begin{array}{l}
4x – \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\
4x – \dfrac{\pi }{6} = – \dfrac{\pi }{6} + k2\pi
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{{12}} + \dfrac{{k\pi }}{2}\\
x = \dfrac{{k\pi }}{2}
\end{array} \right.\\
b)\sin 2x – \cos 2x = – 1\\
\Rightarrow \sqrt 2 .\sin \left( {2x – \dfrac{\pi }{4}} \right) = – 1\\
\Rightarrow \sin \left( {2x – \dfrac{\pi }{4}} \right) = – \dfrac{1}{{\sqrt 2 }}\\
\Rightarrow \left[ \begin{array}{l}
2x – \dfrac{\pi }{4} = \dfrac{{ – \pi }}{4} + k2\pi \\
2x – \dfrac{\pi }{4} = \dfrac{{5\pi }}{4} + k2\pi
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \dfrac{{3\pi }}{4} + k\pi
\end{array} \right.
\end{array}$