Giải phương trình lượng giác sau: Cos(3x-π/4)=sinx 13/07/2021 Bởi Kaylee Giải phương trình lượng giác sau: Cos(3x-π/4)=sinx
Đáp án: $x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2};x = \dfrac{{ – \pi }}{8} + k\pi \left( {k \in Z} \right)$ Giải thích các bước giải: $\begin{array}{l}Do:\sin x = \cos \left( {\dfrac{\pi }{2} – x} \right)\\\cos \left( {3x – \dfrac{\pi }{4}} \right) = \sin x\\ \Leftrightarrow \cos \left( {3x – \dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{2} – x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x – \dfrac{\pi }{4} = \dfrac{\pi }{2} – x + k2\pi \\3x – \dfrac{\pi }{4} = x – \dfrac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in Z} \right)\\ \Leftrightarrow \left[ \begin{array}{l}4x = \dfrac{{3\pi }}{4} + k2\pi \\2x = – \dfrac{\pi }{4} + k2\pi \end{array} \right.\left( {k \in Z} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2}\\x = \dfrac{{ – \pi }}{8} + k\pi \end{array} \right.\left( {k \in Z} \right)\\Vậy\,x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2};x = \dfrac{{ – \pi }}{8} + k\pi \left( {k \in Z} \right)\end{array}$ Bình luận
$cos(3x – \dfrac{\pi}{4}) = sinx$ $⇔cos(3x – \dfrac{\pi}{4}) = cos( \dfrac{\pi}{2} – x)$ $⇔ \left[ \begin{array}{l}3x – \dfrac{\pi}{4}=\dfrac{\pi}{2} – x + k2\pi\\3x – \dfrac{\pi}{4}=-(\dfrac{\pi}{2} – x) + k2\pi\end{array} \right.$ ($k∈Z$) $⇔ \left[ \begin{array}{l}4x=\dfrac{3\pi}{4} + k2\pi\\2x=-\dfrac{\pi}{4} + k2\pi\end{array} \right.$ ($k∈Z$) $⇔ \left[ \begin{array}{l}x=\dfrac{3\pi}{16} + k\dfrac{\pi}{2}\\2x=-\dfrac{\pi}{8} + k\pi\end{array} \right.$ ($k∈Z$) Vậy $x=\dfrac{3\pi}{16} + k\dfrac{\pi}{2}$ hoặc $x = 2x=-\dfrac{\pi}{8} + k\pi$ Bình luận
Đáp án: $x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2};x = \dfrac{{ – \pi }}{8} + k\pi \left( {k \in Z} \right)$
Giải thích các bước giải:
$\begin{array}{l}
Do:\sin x = \cos \left( {\dfrac{\pi }{2} – x} \right)\\
\cos \left( {3x – \dfrac{\pi }{4}} \right) = \sin x\\
\Leftrightarrow \cos \left( {3x – \dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{2} – x} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3x – \dfrac{\pi }{4} = \dfrac{\pi }{2} – x + k2\pi \\
3x – \dfrac{\pi }{4} = x – \dfrac{\pi }{2} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
4x = \dfrac{{3\pi }}{4} + k2\pi \\
2x = – \dfrac{\pi }{4} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2}\\
x = \dfrac{{ – \pi }}{8} + k\pi
\end{array} \right.\left( {k \in Z} \right)\\
Vậy\,x = \dfrac{{3\pi }}{{16}} + \dfrac{{k\pi }}{2};x = \dfrac{{ – \pi }}{8} + k\pi \left( {k \in Z} \right)
\end{array}$
$cos(3x – \dfrac{\pi}{4}) = sinx$
$⇔cos(3x – \dfrac{\pi}{4}) = cos( \dfrac{\pi}{2} – x)$
$⇔ \left[ \begin{array}{l}3x – \dfrac{\pi}{4}=\dfrac{\pi}{2} – x + k2\pi\\3x – \dfrac{\pi}{4}=-(\dfrac{\pi}{2} – x) + k2\pi\end{array} \right.$ ($k∈Z$)
$⇔ \left[ \begin{array}{l}4x=\dfrac{3\pi}{4} + k2\pi\\2x=-\dfrac{\pi}{4} + k2\pi\end{array} \right.$ ($k∈Z$)
$⇔ \left[ \begin{array}{l}x=\dfrac{3\pi}{16} + k\dfrac{\pi}{2}\\2x=-\dfrac{\pi}{8} + k\pi\end{array} \right.$ ($k∈Z$)
Vậy $x=\dfrac{3\pi}{16} + k\dfrac{\pi}{2}$ hoặc $x = 2x=-\dfrac{\pi}{8} + k\pi$