giải phương trình nghiệm nguyên: $2yx^2-x+2y=3-2xy$ 22/10/2021 Bởi Bella giải phương trình nghiệm nguyên: $2yx^2-x+2y=3-2xy$
`\qquad 2yx^2-x+2y=3-2xy` `<=>2yx^2+2xy+2y=x+3` `<=>2y(x^2+x+1)=x+3` `=>2y={x+3}/{x^2+x+1}` Vì `y\in Z=>2y\in Z=>(x+3)\ \vdots \ (x^2+x+1)` Vì `x\in Z=>x-2\in Z` `=>(x-2)(x+3)\ \vdots \ (x^2+x+1)` `=>(x^2+3x-2x-6)\ \vdots \ (x^2+x+1)` `=>(x^2+x+1-7)\ \vdots \ (x^2+x+1)` $\\$ Do `(x^2+x+1)\ \vdots \ (x^2+x+1)` `=>7\ \vdots \ (x^2+x+1)` `=>x^2+x+1\in Ư(7)={-7;-1;1;7}` Ta có: `x^2+x+1=x^2+2.x. 1/ 2 + 1/ 4 +3/ 4` `=(x+ 1/ 2)^2+3/ 4\ge 3/ 4 >0` với mọi $x$ $\\$ `=>x^2+x+1\in {1;7}` $\\$ +) Nếu `x^2+x+1=1` `<=>x^2+x=0` `<=>x(x+1)=0` $⇔\left[\begin{array}{l}x=0\\x+1=0\end{array}\right.$ $⇔\left[\begin{array}{l}x=0\\x=-1\end{array}\right.$ $\\$ `\qquad 2y={x+3}/{x^2+x+1}` `=>y={x+3}/{2(x^2+x+1)}` $\\$ ++) $TH: x=0$ `=>y={0+3}/{2.(0^2+0+1)}=3/ 2 ` (loại) $\\$ ++) $TH: x=-1$ `=>y={-1+3}/{2.[(-1)^2-1+1]}=1` (TM) `=>(x;y)=(-1;1)` $\\$ +) Nếu `x^2+x+1=7` `<=>x^2+x-6=0` `<=>x^2-2x+3x-6=0` `<=>x(x-2)+3(x-2)=0` `<=>(x-2)(x+3)=0` $⇔\left[\begin{array}{l}x-2=0\\x+3=0\end{array}\right.$ $⇔\left[\begin{array}{l}x=2\\x=-3\end{array}\right.$ $\\$ `y={x+3}/{2(x^2+x+1)}` $\\$ ++) $TH: x=2$ `=>y={2+3}/{2.(2^2+2+1)}=5/ {14}` (loại) $\\$ ++) $TH: x=-3$ `=>y={-3+3}/{2.[(-3)^2-3+1]}=0` (TM) `=>(x;y)=(-3;0)` $\\$ Vậy nghiệm nguyên của phương trình là: `(x;y)\in {(-1;1);(-3;0)}` Bình luận
`\qquad 2yx^2-x+2y=3-2xy`
`<=>2yx^2+2xy+2y=x+3`
`<=>2y(x^2+x+1)=x+3`
`=>2y={x+3}/{x^2+x+1}`
Vì `y\in Z=>2y\in Z=>(x+3)\ \vdots \ (x^2+x+1)`
Vì `x\in Z=>x-2\in Z`
`=>(x-2)(x+3)\ \vdots \ (x^2+x+1)`
`=>(x^2+3x-2x-6)\ \vdots \ (x^2+x+1)`
`=>(x^2+x+1-7)\ \vdots \ (x^2+x+1)`
$\\$
Do `(x^2+x+1)\ \vdots \ (x^2+x+1)`
`=>7\ \vdots \ (x^2+x+1)`
`=>x^2+x+1\in Ư(7)={-7;-1;1;7}`
Ta có:
`x^2+x+1=x^2+2.x. 1/ 2 + 1/ 4 +3/ 4`
`=(x+ 1/ 2)^2+3/ 4\ge 3/ 4 >0` với mọi $x$
$\\$
`=>x^2+x+1\in {1;7}`
$\\$
+) Nếu `x^2+x+1=1`
`<=>x^2+x=0`
`<=>x(x+1)=0`
$⇔\left[\begin{array}{l}x=0\\x+1=0\end{array}\right.$ $⇔\left[\begin{array}{l}x=0\\x=-1\end{array}\right.$
$\\$
`\qquad 2y={x+3}/{x^2+x+1}`
`=>y={x+3}/{2(x^2+x+1)}`
$\\$
++) $TH: x=0$
`=>y={0+3}/{2.(0^2+0+1)}=3/ 2 ` (loại)
$\\$
++) $TH: x=-1$
`=>y={-1+3}/{2.[(-1)^2-1+1]}=1` (TM)
`=>(x;y)=(-1;1)`
$\\$
+) Nếu `x^2+x+1=7`
`<=>x^2+x-6=0`
`<=>x^2-2x+3x-6=0`
`<=>x(x-2)+3(x-2)=0`
`<=>(x-2)(x+3)=0`
$⇔\left[\begin{array}{l}x-2=0\\x+3=0\end{array}\right.$ $⇔\left[\begin{array}{l}x=2\\x=-3\end{array}\right.$
$\\$
`y={x+3}/{2(x^2+x+1)}`
$\\$
++) $TH: x=2$
`=>y={2+3}/{2.(2^2+2+1)}=5/ {14}` (loại)
$\\$
++) $TH: x=-3$
`=>y={-3+3}/{2.[(-3)^2-3+1]}=0` (TM)
`=>(x;y)=(-3;0)`
$\\$
Vậy nghiệm nguyên của phương trình là:
`(x;y)\in {(-1;1);(-3;0)}`