giải phương trình nghiệm nguyên: $2xy^2-xy-y+2y^2+x^3=1-x$ 23/10/2021 Bởi Brielle giải phương trình nghiệm nguyên: $2xy^2-xy-y+2y^2+x^3=1-x$
Đáp án: $(x,y)\in\{(1,1)\}$ Giải thích các bước giải: Ta có: $2xy^2-xy-y+2y^2+x^3=1-x$ $\to (2xy^2+2y^2)-(xy+y)=-x^3-x+1$ $\to 2y^2(x+1)-y(x+1)=-x^3-x+1$ $\to (2y^2-y)(x+1)=-x^3-x+1$ Ta có: $(2y^2-y)(x+1)\quad\vdots\quad x+1$ $\to -x^3-x+1\quad\vdots\quad x+1$ $\to -(x^3+1)-(x+1)+3\quad\vdots\quad x+1$ $\to -(x+1)(x^2-x+1)-(x+1)+3\quad\vdots\quad x+1$ $\to 3\quad\vdots\quad x+1$ $\to x+1\in\{1,3,-1,-3\}$ $\to x\in\{0,2,-2,-4\}$ $\to 2y^2-y\in\{1,-3,-11, -23\}$ Mà $2y^2-y=2(y-\dfrac14)^2-\dfrac18\ge -\dfrac18$ $\to 2y^2-y=1, x=0$ $\to 2y^2-y-1=0\to (2y+1)(y-1)=0\to y=1$ vì $y\in Z$ $\to (x,y)\in\{(1,1)\}$ Bình luận
Đáp án: $(x,y)\in\{(1,1)\}$
Giải thích các bước giải:
Ta có:
$2xy^2-xy-y+2y^2+x^3=1-x$
$\to (2xy^2+2y^2)-(xy+y)=-x^3-x+1$
$\to 2y^2(x+1)-y(x+1)=-x^3-x+1$
$\to (2y^2-y)(x+1)=-x^3-x+1$
Ta có: $(2y^2-y)(x+1)\quad\vdots\quad x+1$
$\to -x^3-x+1\quad\vdots\quad x+1$
$\to -(x^3+1)-(x+1)+3\quad\vdots\quad x+1$
$\to -(x+1)(x^2-x+1)-(x+1)+3\quad\vdots\quad x+1$
$\to 3\quad\vdots\quad x+1$
$\to x+1\in\{1,3,-1,-3\}$
$\to x\in\{0,2,-2,-4\}$
$\to 2y^2-y\in\{1,-3,-11, -23\}$
Mà $2y^2-y=2(y-\dfrac14)^2-\dfrac18\ge -\dfrac18$
$\to 2y^2-y=1, x=0$
$\to 2y^2-y-1=0\to (2y+1)(y-1)=0\to y=1$ vì $y\in Z$
$\to (x,y)\in\{(1,1)\}$