Giải phương trình sau X+3/x-3 – x-3/x+3 = 9/x^2-9

Giải phương trình sau
X+3/x-3 – x-3/x+3 = 9/x^2-9

0 bình luận về “Giải phương trình sau X+3/x-3 – x-3/x+3 = 9/x^2-9”

  1. Đáp án + Giải thích các bước giải:

    `(x+3)/(x-3)-(x-3)/(x+3)=(9)/(x^{2}-9)` `(ĐKXĐ:x\ne±3)`

    `<=>((x+3)^{2})/((x-3)(x+3))-((x-3)^{2})/((x+3)(x-3))=(9)/((x-3)(x+3))`

    `=>(x+3)^{2}-(x-3)^{2}=9`

    `<=>x^{2}+6x+9-(x^{2}-6x+9)=9`

    `<=>x^{2}-x^{2}+6x+6x+9-9=9`

    `<=>12x=9`

    `<=>x=(3)/(4)\ \ (TM)`

    Vậy phương trình có một nghiệm duy nhất : `x=(3)/(4)`

    Bình luận
  2. ta có

    $\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{9}{x^2-9}$

    <=>$\dfrac{(x+3)(x+3)}{x^2-9}-\dfrac{(x-3)(x-3)}{x^2-9}=\dfrac{9}{x^2-9}$ 

    <=>$(x+3)^2-(x-3)^2-9=0$

    <=>$x^2+6x+9-(x^2-6x+9)-9=0$

    <=>$12x-9=0$

    <=>$12x=9$

    <=>$x=\dfrac{9}{12}$

    xin hay nhất nhé

    Bình luận

Viết một bình luận