giai phuong trinh sau : (tanx-2)(cotx=1)=0 24/07/2021 Bởi Kinsley giai phuong trinh sau : (tanx-2)(cotx=1)=0
Đáp án: \(\left[ \begin{array}{l}x = B + k\pi \\x = – \dfrac{\pi }{4} + k\pi \end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:\left\{ \begin{array}{l}\cos x \ne 0\\\sin x \ne 0\end{array} \right. \to \sin 2x \ne 0\\ \to 2x \ne k\pi \to x \ne \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\\\left( {\tan x – 2} \right)\left( {\cot x + 1} \right) = 0\\ \to \left[ \begin{array}{l}\tan x = 2\\\cot x = – 1\end{array} \right.\\Đặt:2 = \tan B\\ \to \left[ \begin{array}{l}\tan x = \tan B\\\tan x = – 1\end{array} \right.\\ \to \left[ \begin{array}{l}x = B + k\pi \\x = – \dfrac{\pi }{4} + k\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\) Bình luận
Đáp án: \(\left[ \begin{array}{l}x = arctan 2 + kπ\\x = \frac{-π}{4} + kπ\end{array} \right.\) `(k ∈ ZZ)` Giải thích các bước giải: `ĐK: x ne k(π)/2` `=>` \(\left[ \begin{array}{l}tan x – 2 = 0\\cot x + 1 = 0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}tan x = 2\\cot x = -1\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x = arctan 2 + kπ\\x = \frac{-π}{4} + kπ\end{array} \right.\) `(k ∈ ZZ)` Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x = B + k\pi \\
x = – \dfrac{\pi }{4} + k\pi
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:\left\{ \begin{array}{l}
\cos x \ne 0\\
\sin x \ne 0
\end{array} \right. \to \sin 2x \ne 0\\
\to 2x \ne k\pi \to x \ne \dfrac{{k\pi }}{2}\left( {k \in Z} \right)\\
\left( {\tan x – 2} \right)\left( {\cot x + 1} \right) = 0\\
\to \left[ \begin{array}{l}
\tan x = 2\\
\cot x = – 1
\end{array} \right.\\
Đặt:2 = \tan B\\
\to \left[ \begin{array}{l}
\tan x = \tan B\\
\tan x = – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = B + k\pi \\
x = – \dfrac{\pi }{4} + k\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)
Đáp án: \(\left[ \begin{array}{l}x = arctan 2 + kπ\\x = \frac{-π}{4} + kπ\end{array} \right.\) `(k ∈ ZZ)`
Giải thích các bước giải:
`ĐK: x ne k(π)/2`
`=>` \(\left[ \begin{array}{l}tan x – 2 = 0\\cot x + 1 = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}tan x = 2\\cot x = -1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = arctan 2 + kπ\\x = \frac{-π}{4} + kπ\end{array} \right.\) `(k ∈ ZZ)`