giải phương trình vi phân cấp 1 y’+2y=(3x+5)e^-2x 14/09/2021 Bởi Reagan giải phương trình vi phân cấp 1 y’+2y=(3x+5)e^-2x
Đáp án: $y = -(3x+8)e^{-2x} + C.e^{-x}$ Giải thích các bước giải: Phương trình vi phân tuyến tính cấp I dạng: $y’ + p(x)y = q(x)$ có nghiệm tổng quát là: $y = e^{-\int p(x)dx}\left[\displaystyle\int q(x)e^{\int p(x)dx} + C\right]$ Áp dụng: Với $p(x)= 2;\ q(x)= (3x+5)e^{-2x}$ $y’ + 2y = (3x+5)e^{-2x}$ Ta có: $p(x) = 2\Rightarrow \displaystyle\int p(x)dx= x$ Do đó phương trình có nghiệm tổng quát là: $\quad y = e^{-x}\left[(3x +5)e^{-2x}.e^{x}dx + C\right]$ $\to y = e^{-x}\left[-e^{-x}(3x+8) + C\right]$ $\to y = -(3x+8)e^{-2x} + C.e^{-x}$ Bình luận
Đáp án:
$y = -(3x+8)e^{-2x} + C.e^{-x}$
Giải thích các bước giải:
Phương trình vi phân tuyến tính cấp I dạng:
$y’ + p(x)y = q(x)$
có nghiệm tổng quát là:
$y = e^{-\int p(x)dx}\left[\displaystyle\int q(x)e^{\int p(x)dx} + C\right]$
Áp dụng:
Với $p(x)= 2;\ q(x)= (3x+5)e^{-2x}$
$y’ + 2y = (3x+5)e^{-2x}$
Ta có:
$p(x) = 2\Rightarrow \displaystyle\int p(x)dx= x$
Do đó phương trình có nghiệm tổng quát là:
$\quad y = e^{-x}\left[(3x +5)e^{-2x}.e^{x}dx + C\right]$
$\to y = e^{-x}\left[-e^{-x}(3x+8) + C\right]$
$\to y = -(3x+8)e^{-2x} + C.e^{-x}$