Giải pt 1. sin^2 x = 1/4 2. (sin x – 1) (2sin x – 1) = 0 28/07/2021 Bởi Margaret Giải pt 1. sin^2 x = 1/4 2. (sin x – 1) (2sin x – 1) = 0
Đáp án: 2) \(\left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}1){\sin ^2}x = \dfrac{1}{4}\\ \to \left[ \begin{array}{l}\sin x = \dfrac{1}{2}\\\sin x = – \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \\x = – \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\left( {k \in Z} \right)\\2)\left[ \begin{array}{l}\sin x – 1 = 0\\2\sin x – 1 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}\sin x = 1\\\sin x = \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\) Bình luận
Đáp án:
2) \(\left[ \begin{array}{l}
x = \dfrac{\pi }{2} + k2\pi \\
x = \dfrac{\pi }{6} + k2\pi \\
x = \dfrac{{5\pi }}{6} + k2\pi
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
1){\sin ^2}x = \dfrac{1}{4}\\
\to \left[ \begin{array}{l}
\sin x = \dfrac{1}{2}\\
\sin x = – \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{\pi }{6} + k2\pi \\
x = \dfrac{{5\pi }}{6} + k2\pi \\
x = – \dfrac{\pi }{6} + k2\pi \\
x = \dfrac{{7\pi }}{6} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
2)\left[ \begin{array}{l}
\sin x – 1 = 0\\
2\sin x – 1 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sin x = 1\\
\sin x = \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{\pi }{2} + k2\pi \\
x = \dfrac{\pi }{6} + k2\pi \\
x = \dfrac{{5\pi }}{6} + k2\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)