giải pt 10/ $2(cosx+ √3sinx)cosx=cosx- √3sinx+1$

giải pt
10/ $2(cosx+ √3sinx)cosx=cosx- √3sinx+1$

0 bình luận về “giải pt 10/ $2(cosx+ √3sinx)cosx=cosx- √3sinx+1$”

  1. Đáp án:

    $\left[\begin{array}{l}x = \dfrac{2\pi}{3} + k2\pi\\x= k\dfrac{2\pi}{3}\end{array}\right.\quad (k\in \Bbb Z)$

    Giải thích các bước giải:

    $2(\cos x +\sqrt3\sin x)\cos x = \cos x – \sqrt3\sin x + 1$

    $\Leftrightarrow 2\cos^2x – 1 + 2\sqrt3\sin x\cos x = \cos x – \sqrt3\sin x$

    $\Leftrightarrow \cos2x + \sqrt3\sin2x = \cos x – \sqrt3\sin x$

    $\Leftrightarrow \dfrac{1}{2}\cos2x + \dfrac{\sqrt3}{2}\sin2x = \dfrac{1}{2}\cos x -\dfrac{\sqrt3}{2}\sin x$

    $\Leftrightarrow \cos\left(2x -\dfrac{\pi}{3}\right) = \cos\left(x +\dfrac{\pi}{3}\right)$

    $\Leftrightarrow \left[\begin{array}{l}2x – \dfrac{\pi}{3} = x + \dfrac{\pi}{3} + k2\pi\\2x – \dfrac{\pi}{3} =- x -\dfrac{\pi}{3} + k2\pi\end{array}\right.$

    $\Leftrightarrow \left[\begin{array}{l}x = \dfrac{2\pi}{3} + k2\pi\\x= k\dfrac{2\pi}{3}\end{array}\right.\quad (k\in \Bbb Z)$

    Bình luận
  2. $2\cos^2x+2\sqrt3\sin x\cos x -1=\cos x-\sqrt3\sin x$

    $\Leftrightarrow \cos2x+\sqrt3\sin2x=\cos x-\sqrt3\sin x$

    $\Leftrightarrow 2\sin(2x+\dfrac{\pi}{6})=2\sin(\dfrac{\pi}{6}-x)$

    $\Leftrightarrow \sin(2x+\dfrac{\pi}{6})=\sin(\dfrac{\pi}{6}-x)$

    $+)TH1: 2x+\dfrac{\pi}{6}=\dfrac{\pi}{6}-x+k2\pi\Leftrightarrow x=\dfrac{k2\pi}{3}$

    $+)TH2: 2x+\dfrac{\pi}{6}=x+\dfrac{5\pi}{6}+k2\pi\Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi$

    Bình luận

Viết một bình luận