giải pt 4sin²2x – 1 = 0, x ∈ [0; 2 $\pi$ ] 01/09/2021 Bởi Eva giải pt 4sin²2x – 1 = 0, x ∈ [0; 2 $\pi$ ]
$4sin^{2}2x-1=0$ ⇔ $4.\frac{1-cos4x}{2}=1$ ⇔ $2 – 2cos4x = 1 $ ⇔ $cos4x=\frac{1}{2}$ ⇔ $cos4x=cos\frac{\pi}{3}$ ⇔ \(\left[ \begin{array}{l}4x=\frac{\pi}{3}+k2\pi\\4x=\frac{-\pi}{3}+k2\pi\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{-\pi}{12}+\frac{k\pi}{2}\end{array}(k∈Z) \right.\) Ta có: $+) 0\leq x\leq 2\pi$ ⇔ $0\leq \frac{\pi}{12}+\frac{k\pi}{2} \leq 2\pi$ ⇔ $\frac{-1}{6}\leq k \leq \frac{23}{6}$ Vì $k ∈ Z ⇒ k ∈$ {0; 1; 2; 3} · $k = 0 ⇒ x = \frac{\pi}{12}$ · $k=1 => x=\frac{7\pi}{12}$ · $k=2 => x=\frac{13\pi}{12}$ · $k=3 => x=\frac{19\pi}{12}$ $+) 0\leq x\leq 2\pi$ ⇔ $0\leq \frac{-\pi}{12}+\frac{k\pi}{2} \leq 2\pi$ ⇔ $\frac{1}{6}\leq k \leq \frac{25}{6}$ Vì $k ∈ Z ⇒ k ∈$ {1; 2; 3;4} · $k=1 => x=\frac{5\pi}{12}$ · $k=2 => x=\frac{11\pi}{12}$ · $k=3 => x=\frac{17\pi}{12}$ · $k=4 => x=\frac{23\pi}{12}$ Vậy PT có tập nghiệm S=… Bình luận
$4sin^{2}2x-1=0$
⇔ $4.\frac{1-cos4x}{2}=1$
⇔ $2 – 2cos4x = 1 $
⇔ $cos4x=\frac{1}{2}$
⇔ $cos4x=cos\frac{\pi}{3}$
⇔ \(\left[ \begin{array}{l}4x=\frac{\pi}{3}+k2\pi\\4x=\frac{-\pi}{3}+k2\pi\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{-\pi}{12}+\frac{k\pi}{2}\end{array}(k∈Z) \right.\)
Ta có:
$+) 0\leq x\leq 2\pi$
⇔ $0\leq \frac{\pi}{12}+\frac{k\pi}{2} \leq 2\pi$
⇔ $\frac{-1}{6}\leq k \leq \frac{23}{6}$
Vì $k ∈ Z ⇒ k ∈$ {0; 1; 2; 3}
· $k = 0 ⇒ x = \frac{\pi}{12}$
· $k=1 => x=\frac{7\pi}{12}$
· $k=2 => x=\frac{13\pi}{12}$
· $k=3 => x=\frac{19\pi}{12}$
$+) 0\leq x\leq 2\pi$
⇔ $0\leq \frac{-\pi}{12}+\frac{k\pi}{2} \leq 2\pi$
⇔ $\frac{1}{6}\leq k \leq \frac{25}{6}$
Vì $k ∈ Z ⇒ k ∈$ {1; 2; 3;4}
· $k=1 => x=\frac{5\pi}{12}$
· $k=2 => x=\frac{11\pi}{12}$
· $k=3 => x=\frac{17\pi}{12}$
· $k=4 => x=\frac{23\pi}{12}$
Vậy PT có tập nghiệm S=…
Đáp án:
Giải thích các bước giải: