Giải pt: a. $cos^22x=\frac{1}{4}$ b. $cos2x.tanx=0$ c. $ sin3x.cotx=0$

Giải pt:
a. $cos^22x=\frac{1}{4}$
b. $cos2x.tanx=0$
c. $ sin3x.cotx=0$

0 bình luận về “Giải pt: a. $cos^22x=\frac{1}{4}$ b. $cos2x.tanx=0$ c. $ sin3x.cotx=0$”

  1. Đáp án:

    a. \(\left[ \begin{array}{l}
    x = \dfrac{\pi }{6} + k\pi \\
    x =  – \dfrac{\pi }{6} + k\pi \\
    x = \dfrac{\pi }{3} + k\pi \\
    x =  – \dfrac{\pi }{3} + k\pi 
    \end{array} \right.\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    a.\left[ \begin{array}{l}
    \cos 2x = \dfrac{1}{2}\\
    \cos 2x =  – \dfrac{1}{2}
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    2x = \dfrac{\pi }{3} + k2\pi \\
    2x =  – \dfrac{\pi }{3} + k2\pi \\
    2x = \dfrac{{2\pi }}{3} + k2\pi \\
    2x =  – \dfrac{{2\pi }}{3} + k2\pi 
    \end{array} \right. \to \left[ \begin{array}{l}
    x = \dfrac{\pi }{6} + k\pi \\
    x =  – \dfrac{\pi }{6} + k\pi \\
    x = \dfrac{\pi }{3} + k\pi \\
    x =  – \dfrac{\pi }{3} + k\pi 
    \end{array} \right.\left( {k \in Z} \right)\\
    b.DK:\cos x \ne 0 \to x \ne \dfrac{\pi }{2} + k\pi \\
    \left[ \begin{array}{l}
    \cos 2x = 0\\
    \tan x = 0
    \end{array} \right. \to \left[ \begin{array}{l}
    2x = \dfrac{\pi }{2} + k\pi \\
    x = k\pi 
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\\
    x = k\pi 
    \end{array} \right.\\
     \to x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\\
    c.DK:\sin x \ne 0 \to x \ne k\pi \\
    \sin 3x.\cot x = 0\\
     \to \left[ \begin{array}{l}
    \sin 3x = 0\\
    \cos x = 0
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    3x = k\pi \\
    x = \dfrac{\pi }{2} + k\pi 
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = \dfrac{{k\pi }}{3}\\
    x = \dfrac{\pi }{2} + k\pi 
    \end{array} \right.\left( {k \in Z} \right)
    \end{array}\)

    Bình luận
  2. Đáp án:

    `a)` \(\left[ \begin{array}{l}x = ±\frac{π}{6}\\x = ±\frac{π}{3}\end{array} \right.\) `(k ∈ ZZ)`

    `b)` \(\left[ \begin{array}{l}x = \frac{π}{4} + k\frac{π}{2}\\x = kπ\end{array} \right.\) `(k ∈ ZZ)`

    `c)`  \(\left[ \begin{array}{l}x = k\frac{π}{3}\\x = \frac{π}{2} + kπ\end{array} \right.\) `(k ∈ ZZ)`

    Giải thích các bước giải:

    `a) cos² 2x = 1/4`

    `<=>`  \(\left[ \begin{array}{l}cos 2x = frac{1}{2}\\cos 2x = -\frac{1}{2}\end{array} \right.\) 

    `<=>`  \(\left[ \begin{array}{l}2x = ±\frac{π}{3}\\2x = ±\frac{2π}{3}\end{array} \right.\) 

    `<=>`  \(\left[ \begin{array}{l}x = ±\frac{π}{6}\\x = ±\frac{π}{3}\end{array} \right.\) `(k ∈ ZZ)`

    `b) cos 2x.tan x = 0`

    `ĐKXĐ: x ne (π)/2 + kπ`

    `=>`  \(\left[ \begin{array}{l}cos 2x = 0\\tan x = 0\end{array} \right.\) 

    `<=>`  \(\left[ \begin{array}{l}2x = \frac{π}{2} + kπ\\sin x = 0\end{array} \right.\) 

    `<=>`  \(\left[ \begin{array}{l}x = \frac{π}{4} + k\frac{π}{2}\\x = kπ\end{array} \right.\) `(k ∈ ZZ)`

    `c) sin 3x.cot x = 0`

    `ĐKXĐ: x ne kπ`

    `=>` \(\left[ \begin{array}{l}sin 3x = 0\\cot x = 0\end{array} \right.\) 

    `<=>` \(\left[ \begin{array}{l}3x = kπ\\x = \frac{π}{2} + kπ\end{array} \right.\) 

    `<=>` \(\left[ \begin{array}{l}x = k\frac{π}{3}\\x = \frac{π}{2} + kπ\end{array} \right.\) `(k ∈ ZZ)`

    Bình luận

Viết một bình luận