Giải pt: cosx + √3 sinx = 3 /( cosx + √3 sinx +1) 04/07/2021 Bởi Jade Giải pt: cosx + √3 sinx = 3 /( cosx + √3 sinx +1)
Đáp án: $\begin{array}{l}\text{Đặt}:\cos x + \sqrt 3 \sin x + 1 = a\\ \Rightarrow \cos x + \sqrt 3 \sin x = a – 1\\Dk:1 + {\left( {\sqrt 3 } \right)^2} \ge {\left( {a – 1} \right)^2}\\ \Leftrightarrow {\left( {a – 1} \right)^2} \le 4\\ \Leftrightarrow – 2 \le a – 1 \le 2\\ \Leftrightarrow – 1 \le a \le 3\\Pt:\cos x + \sqrt 3 \sin x = \dfrac{3}{{\cos x + \sqrt 3 \sin x + 1}}\\ \Leftrightarrow a – 1 = \dfrac{3}{a}\\ \Leftrightarrow a\left( {a – 1} \right) = 3\\ \Leftrightarrow {a^2} – a – 3 = 0\\ \Leftrightarrow {\left( {a – \dfrac{1}{2}} \right)^2} = \dfrac{1}{4} + 3 = \dfrac{{13}}{4}\\ \Leftrightarrow a = \dfrac{{\sqrt {13} + 1}}{2}\left( {do: – 1 \le a \le 3} \right)\\ \Leftrightarrow \cos x + \sqrt 3 \sin x = \dfrac{{\sqrt {13} + 1}}{2} – 1\\ \Leftrightarrow \cos x + \sqrt 3 \sin x = \dfrac{{\sqrt {13} – 1}}{2}\\ \Leftrightarrow \dfrac{1}{2}.\cos x + \dfrac{{\sqrt 3 }}{2}\sin x = \dfrac{{\sqrt {13} – 1}}{4}\\ \Leftrightarrow \sin \left( {{{30}^0} + x} \right) = \dfrac{{\sqrt {13} – 1}}{4}\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^0} = {41^0} + k{.360^0}\\x + {30^0} = {180^0} – {41^0} + k{.360^0}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {11^0} + k{.360^0}\\x = {109^0} + k{.360^0}\end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
\text{Đặt}:\cos x + \sqrt 3 \sin x + 1 = a\\
\Rightarrow \cos x + \sqrt 3 \sin x = a – 1\\
Dk:1 + {\left( {\sqrt 3 } \right)^2} \ge {\left( {a – 1} \right)^2}\\
\Leftrightarrow {\left( {a – 1} \right)^2} \le 4\\
\Leftrightarrow – 2 \le a – 1 \le 2\\
\Leftrightarrow – 1 \le a \le 3\\
Pt:\cos x + \sqrt 3 \sin x = \dfrac{3}{{\cos x + \sqrt 3 \sin x + 1}}\\
\Leftrightarrow a – 1 = \dfrac{3}{a}\\
\Leftrightarrow a\left( {a – 1} \right) = 3\\
\Leftrightarrow {a^2} – a – 3 = 0\\
\Leftrightarrow {\left( {a – \dfrac{1}{2}} \right)^2} = \dfrac{1}{4} + 3 = \dfrac{{13}}{4}\\
\Leftrightarrow a = \dfrac{{\sqrt {13} + 1}}{2}\left( {do: – 1 \le a \le 3} \right)\\
\Leftrightarrow \cos x + \sqrt 3 \sin x = \dfrac{{\sqrt {13} + 1}}{2} – 1\\
\Leftrightarrow \cos x + \sqrt 3 \sin x = \dfrac{{\sqrt {13} – 1}}{2}\\
\Leftrightarrow \dfrac{1}{2}.\cos x + \dfrac{{\sqrt 3 }}{2}\sin x = \dfrac{{\sqrt {13} – 1}}{4}\\
\Leftrightarrow \sin \left( {{{30}^0} + x} \right) = \dfrac{{\sqrt {13} – 1}}{4}\\
\Leftrightarrow \left[ \begin{array}{l}
x + {30^0} = {41^0} + k{.360^0}\\
x + {30^0} = {180^0} – {41^0} + k{.360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {11^0} + k{.360^0}\\
x = {109^0} + k{.360^0}
\end{array} \right.
\end{array}$