Giải pt $\frac{1}{x(x+1)}$ +$\frac{1}{(x+1)(x+2)}$ +$\frac{1}{(x+2)(x+3)}$ =$\frac{3}{10}$

Giải pt
$\frac{1}{x(x+1)}$ +$\frac{1}{(x+1)(x+2)}$ +$\frac{1}{(x+2)(x+3)}$ =$\frac{3}{10}$

0 bình luận về “Giải pt $\frac{1}{x(x+1)}$ +$\frac{1}{(x+1)(x+2)}$ +$\frac{1}{(x+2)(x+3)}$ =$\frac{3}{10}$”

  1. Đáp án:

     

    Giải thích các bước giải:

    ta có:

    $\frac{1}{x(x+1)}$+$\frac{1}{(x+1)(x+2)}$+$\frac{1}{(x+2)(x+3)}$=$\frac{3}{10}$

    ⇒$\frac{(x+2)(x+3)}{x(x+1)(x+3)(x+2)}$+$\frac{(x+3)x}{x(x+3)(x+1)(x+2)}$+$\frac{x(x+1)}{(x(x+1)(x+2)(x+3)}$=$\frac{3}{10}$

    ⇒$\frac{(x+2)(x+3)+x(x+3)+(x(x+1)}{x(x+1)(x+2)(x+3)}$=$\frac{3}{10}$

    ⇒$\frac{x^{2}+5x+6+x^2+3x+x^2+x}{(x+1)(x+2)(x+3)x}$=$\frac{3}{10}$

    ⇒$\frac{3x^2+9x+6}{x(x+1)(x+2)(x+3)}$=$\frac{3}{10}$

    ⇒30$x^{2}$+90x+60=3x(x+1)(x+2)(x+3)

    ⇒30$x^{2}$+90x+60=3$x^{4}$+18$x^{3}$+33$x^{2}$ +18x

    ⇒3$x^{4}$+18$x^{3}$+33$x^{2}$ +18x-30$x^{2}$-90x-60=0

    ⇒3$x^{4}$+18$x^{3}$+3$x^{2}$-72x-60=0

    ⇒$x^{4}$+6$x^{3}$+$x^{2}$-24x-20=0

    ⇒(x-2)(x+2)(x+5)(x+1)=0

    ⇒x=2;=-2;=-5;=-1  

    mà đkxđ là x khác 0;-1;-2;-3

    nên’

    x=2;-5

    Bình luận
  2. `((x+2)(x+3))/(x(x+1)(x+2)(x+3))“+(10x(x+3))/(x(x+1)(x+2)(x+3))“+(10x(x+1))/(x(x+1)(x+2)(x+3))`=`(3x(x+1)(x+2)(x+3))/(x(x+1)(x+2)(x+3))`

    `=>10(x+2)(x+3)+10x(x+3)+10x(x+1)=3x(x+1)(x+2)(x+3)`

    `=>10x^2+30x+20x+60+10x^2+30x+10x^2+10x=3x^4+18x^3+33x^2+18x`

    `=>-3x^4-18x^3-3x^2+72x+60=0`

    `=>-3x^4-15x^3-3x^3-15x^2+12x^2+60=0`

    `=>-2x^3(x+5)-3x^2(x+5)+12x(x+5)=0`

    `=>(-2x^3-3x^2+12x)(x+5)=0`

    `……`

    `=>(x-2)(x+5)=0`

    `=>`\(\left[ \begin{array}{l}x+2=0\\x-5=0\end{array} \right.\)

    `=>`\(\left[ \begin{array}{l}x=-2\\x=5\end{array} \right.\)

    `=>`\(\left[ \begin{array}{l}x=-2\\x=5\end{array} \right.\)

     

    Bình luận

Viết một bình luận