giải pt: $\frac{-5}{-x^{2}+5x-6}$$+$$\frac{x+3}{2-x}$$=0$ 10/10/2021 Bởi Kaylee giải pt: $\frac{-5}{-x^{2}+5x-6}$$+$$\frac{x+3}{2-x}$$=0$
`frac{-5}{-x^2+5x-6}+frac{x+3}{2-x}=0` Điều kiện: `x\ne2;x\ne3` `<=>frac{-5}{-(x^2-5x+6)}+frac{x+3}{2-x}=0` `<=>frac{5}{x^2-5x+6}+frac{x+3}{2-x}=0` `<=>frac{5}{x^2-2x-3x+6}+frac{x+3}{2-x}=0` `<=>frac{5}{x(x-2)-3(x-2)}+frac{x+3}{2-x}=0` `<=>frac{5}{(x-2)(x-3)}+frac{x+3}{-(x-2)}=0` `<=>frac{5}{(x-2)(x-3)}+frac{-(x+3)}{x-2}=0` `<=>frac{5}{(x-2)(x-3)}+frac{-(x+3)(x-3)}{(x-2)(x-3)}=0` `<=>frac{5}{(x-2)(x-3)}+frac{-(x^2-9)}{(x-2)(x-3)}=0` `<=>frac{5-(x^2-9)}{(x-2)(x-3)}=0` `<=>frac{5-x^2+9}{(x-2)(x-3)}=0` `+)` Một phân thức bằng `0` khi tử số phải bằng `0` `=>5-x^2+9=0` `<=>-x^2+14=0` `<=>-x^2=-14` `<=>x^2=14` `<=>x=\±sqrt{14}` Vậy `S={±\sqrt{14}}` Bình luận
ĐKXĐ: $\begin{cases}-x²+5x-6\ne 0\\2-x\ne 0\end{cases}$ $↔\begin{cases}-(x-3)(x-2)\ne 0\\x\ne 2\end{cases}$ $↔\begin{cases}x\ne 3\\x\ne 2\end{cases}$ $\dfrac{5}{-x²+5x-6}+\dfrac{x+3}{2-x}=0$ $↔\dfrac{-5}{x²-5x+6}-\dfrac{x+3}{x-2}=0$ $↔\dfrac{-5}{(x-3)(x-2)}-\dfrac{(x+3)(x-3)}{(x-2)(x-3)}=0$ $↔\dfrac{-5-x²+9}{(x-2)(x+2)}=0$ $↔4-x²=0$ $↔x²=4$ $↔x=±\sqrt{2}$ Bình luận
`frac{-5}{-x^2+5x-6}+frac{x+3}{2-x}=0` Điều kiện: `x\ne2;x\ne3`
`<=>frac{-5}{-(x^2-5x+6)}+frac{x+3}{2-x}=0`
`<=>frac{5}{x^2-5x+6}+frac{x+3}{2-x}=0`
`<=>frac{5}{x^2-2x-3x+6}+frac{x+3}{2-x}=0`
`<=>frac{5}{x(x-2)-3(x-2)}+frac{x+3}{2-x}=0`
`<=>frac{5}{(x-2)(x-3)}+frac{x+3}{-(x-2)}=0`
`<=>frac{5}{(x-2)(x-3)}+frac{-(x+3)}{x-2}=0`
`<=>frac{5}{(x-2)(x-3)}+frac{-(x+3)(x-3)}{(x-2)(x-3)}=0`
`<=>frac{5}{(x-2)(x-3)}+frac{-(x^2-9)}{(x-2)(x-3)}=0`
`<=>frac{5-(x^2-9)}{(x-2)(x-3)}=0`
`<=>frac{5-x^2+9}{(x-2)(x-3)}=0`
`+)` Một phân thức bằng `0` khi tử số phải bằng `0`
`=>5-x^2+9=0`
`<=>-x^2+14=0`
`<=>-x^2=-14`
`<=>x^2=14`
`<=>x=\±sqrt{14}`
Vậy `S={±\sqrt{14}}`
ĐKXĐ: $\begin{cases}-x²+5x-6\ne 0\\2-x\ne 0\end{cases}$
$↔\begin{cases}-(x-3)(x-2)\ne 0\\x\ne 2\end{cases}$
$↔\begin{cases}x\ne 3\\x\ne 2\end{cases}$
$\dfrac{5}{-x²+5x-6}+\dfrac{x+3}{2-x}=0$
$↔\dfrac{-5}{x²-5x+6}-\dfrac{x+3}{x-2}=0$
$↔\dfrac{-5}{(x-3)(x-2)}-\dfrac{(x+3)(x-3)}{(x-2)(x-3)}=0$
$↔\dfrac{-5-x²+9}{(x-2)(x+2)}=0$
$↔4-x²=0$
$↔x²=4$
$↔x=±\sqrt{2}$