Giải pt log co so 2 của x – log co so 0,5 của (x-1)=O 06/09/2021 Bởi Aaliyah Giải pt log co so 2 của x – log co so 0,5 của (x-1)=O
Đáp án: \(x = \frac{{1 + \sqrt 5 }}{2}\) Giải thích các bước giải: \(\begin{array}{l}\,\,\,\,\,{\log _2}x – {\log _{0,5}}\left( {x – 1} \right) = 0\,\,\left( {x > 1} \right)\\ \Leftrightarrow {\log _2}x – {\log _{{2^{ – 1}}}}\left( {x – 1} \right) = 0\\ \Leftrightarrow {\log _2}x + {\log _2}\left( {x – 1} \right) = 0\\ \Leftrightarrow {\log _2}\left[ {x\left( {x – 1} \right)} \right] = 0\\ \Leftrightarrow x\left( {x – 1} \right) = 1\\ \Leftrightarrow {x^2} – x – 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{1 + \sqrt 5 }}{2}\,\,\left( {tm} \right)\\x = \frac{{1 – \sqrt 5 }}{2}\,\,\left( {ktm} \right)\end{array} \right.\end{array}\) Bình luận
`D = (1; +infty)` `log_{2} (x) – `$log_{\dfrac{1}{2}} (x – 1)$ `= 0` `-> log_{2} (x) – log_{2^{-1}} (x – 1) = 0` `-> log_{2} (x) + log_{2} (x – 1) = 0` `-> log_{2} [x(x – 1)] = 0` `-> x(x – 1) = 2^0 = 1` `-> x^2 – x – 1 = 0` `-> x = (1 + \sqrt{5})/2` Bình luận
Đáp án:
\(x = \frac{{1 + \sqrt 5 }}{2}\)
Giải thích các bước giải:
\(\begin{array}{l}
\,\,\,\,\,{\log _2}x – {\log _{0,5}}\left( {x – 1} \right) = 0\,\,\left( {x > 1} \right)\\
\Leftrightarrow {\log _2}x – {\log _{{2^{ – 1}}}}\left( {x – 1} \right) = 0\\
\Leftrightarrow {\log _2}x + {\log _2}\left( {x – 1} \right) = 0\\
\Leftrightarrow {\log _2}\left[ {x\left( {x – 1} \right)} \right] = 0\\
\Leftrightarrow x\left( {x – 1} \right) = 1\\
\Leftrightarrow {x^2} – x – 1 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{1 + \sqrt 5 }}{2}\,\,\left( {tm} \right)\\
x = \frac{{1 – \sqrt 5 }}{2}\,\,\left( {ktm} \right)
\end{array} \right.
\end{array}\)
`D = (1; +infty)`
`log_{2} (x) – `$log_{\dfrac{1}{2}} (x – 1)$ `= 0`
`-> log_{2} (x) – log_{2^{-1}} (x – 1) = 0`
`-> log_{2} (x) + log_{2} (x – 1) = 0`
`-> log_{2} [x(x – 1)] = 0`
`-> x(x – 1) = 2^0 = 1`
`-> x^2 – x – 1 = 0`
`-> x = (1 + \sqrt{5})/2`