Giải pt sqrt(x+2)+sqrt(5-x)+sqrt(x+2)(5-x)=4 28/08/2021 Bởi Raelynn Giải pt sqrt(x+2)+sqrt(5-x)+sqrt(x+2)(5-x)=4
Đáp án: $x = \frac{{3 + 3\sqrt 5 }}{2}$ Giải thích các bước giải: $\begin{array}{l}ĐKxđ: – 2 \le x \le 5\\\sqrt {x + 2} + \sqrt {5 – x} = a\left( {a > 0} \right)\\ \Rightarrow {a^2} = x + 2 + 5 – x + 2\sqrt {x + 2} .\sqrt {5 – x} \\ \Rightarrow {a^2} = 7 + 2\sqrt {\left( {x – 2} \right)\left( {5 – x} \right)} \\ \Rightarrow \sqrt {\left( {x – 2} \right)\left( {5 – x} \right)} = \frac{{{a^2} – 7}}{2}\\ \Rightarrow pt:a + \frac{{{a^2} – 7}}{2} = 4\\ \Rightarrow {a^2} + 2a – 7 – 8 = 0\\ \Rightarrow {a^2} + 2a – 15 = 0\\ \Rightarrow \left( {a – 3} \right)\left( {a + 5} \right) = 0\\ \Rightarrow a = 3\left( {do\,:a > 0} \right)\\ \Rightarrow \left\{ \begin{array}{l}\sqrt {x + 2} + \sqrt {5 – x} = 3\\\sqrt {\left( {x – 2} \right)\left( {5 – x} \right)} = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}\sqrt {x + 2} = \frac{{3 – \sqrt 5 }}{2}\\\sqrt {5 – x} = \frac{{3 + \sqrt 5 }}{2}\end{array} \right.\\\left\{ \begin{array}{l}\sqrt {x + 2} = \frac{{3 + \sqrt 5 }}{2}\\\sqrt {5 – x} = \frac{{3 – \sqrt 5 }}{2}\end{array} \right.\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 2 = \frac{{7 – 3\sqrt 5 }}{2}\\5 – x = \frac{{7 + 3\sqrt 5 }}{2}\end{array} \right.\\\left\{ \begin{array}{l}x + 2 = \frac{{7 + 3\sqrt 5 }}{2}\\5 – x = \frac{{7 – 3\sqrt 5 }}{2}\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \frac{{1 – 3\sqrt 5 }}{2}\\x = \frac{{3 – 3\sqrt 5 }}{2}\end{array} \right.\left( {ktm} \right)\\\left\{ \begin{array}{l}x = \frac{{3 + 3\sqrt 5 }}{2}\\x = \frac{{3 + 3\sqrt 5 }}{2}\end{array} \right.\end{array} \right. \Rightarrow x = \frac{{3 + 3\sqrt 5 }}{2}\left( {tm} \right)\end{array}$ Bình luận
Đáp án: $x = \frac{{3 + 3\sqrt 5 }}{2}$
Giải thích các bước giải:
$\begin{array}{l}
ĐKxđ: – 2 \le x \le 5\\
\sqrt {x + 2} + \sqrt {5 – x} = a\left( {a > 0} \right)\\
\Rightarrow {a^2} = x + 2 + 5 – x + 2\sqrt {x + 2} .\sqrt {5 – x} \\
\Rightarrow {a^2} = 7 + 2\sqrt {\left( {x – 2} \right)\left( {5 – x} \right)} \\
\Rightarrow \sqrt {\left( {x – 2} \right)\left( {5 – x} \right)} = \frac{{{a^2} – 7}}{2}\\
\Rightarrow pt:a + \frac{{{a^2} – 7}}{2} = 4\\
\Rightarrow {a^2} + 2a – 7 – 8 = 0\\
\Rightarrow {a^2} + 2a – 15 = 0\\
\Rightarrow \left( {a – 3} \right)\left( {a + 5} \right) = 0\\
\Rightarrow a = 3\left( {do\,:a > 0} \right)\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt {x + 2} + \sqrt {5 – x} = 3\\
\sqrt {\left( {x – 2} \right)\left( {5 – x} \right)} = 1
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\sqrt {x + 2} = \frac{{3 – \sqrt 5 }}{2}\\
\sqrt {5 – x} = \frac{{3 + \sqrt 5 }}{2}
\end{array} \right.\\
\left\{ \begin{array}{l}
\sqrt {x + 2} = \frac{{3 + \sqrt 5 }}{2}\\
\sqrt {5 – x} = \frac{{3 – \sqrt 5 }}{2}
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 2 = \frac{{7 – 3\sqrt 5 }}{2}\\
5 – x = \frac{{7 + 3\sqrt 5 }}{2}
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 2 = \frac{{7 + 3\sqrt 5 }}{2}\\
5 – x = \frac{{7 – 3\sqrt 5 }}{2}
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = \frac{{1 – 3\sqrt 5 }}{2}\\
x = \frac{{3 – 3\sqrt 5 }}{2}
\end{array} \right.\left( {ktm} \right)\\
\left\{ \begin{array}{l}
x = \frac{{3 + 3\sqrt 5 }}{2}\\
x = \frac{{3 + 3\sqrt 5 }}{2}
\end{array} \right.
\end{array} \right. \Rightarrow x = \frac{{3 + 3\sqrt 5 }}{2}\left( {tm} \right)
\end{array}$