Giari phương trình sau: a) (x-5)+3(x-5)=0 b) 2x-1/3 – 5x+2/7 = x+13 c) x-1/x+2 – x/x-2 = 7x-6/4-x^2 d) x+1/2021 + x+2/2020 + x+3/2019 + x+4/2018

Giari phương trình sau:
a) (x-5)+3(x-5)=0
b) 2x-1/3 – 5x+2/7 = x+13
c) x-1/x+2 – x/x-2 = 7x-6/4-x^2
d) x+1/2021 + x+2/2020 + x+3/2019 + x+4/2018

0 bình luận về “Giari phương trình sau: a) (x-5)+3(x-5)=0 b) 2x-1/3 – 5x+2/7 = x+13 c) x-1/x+2 – x/x-2 = 7x-6/4-x^2 d) x+1/2021 + x+2/2020 + x+3/2019 + x+4/2018”

  1. $\text{Đáp án + Giải thích các bước giải:}$

    `a//(x-5)+3(x-5)=0`

    `<=>(x-5)(1+3)=0`

    `<=>(x-5).4=0`

    `<=>x-5=0`

    `<=>x=5`

    $\text{Vậy}$ `S={5}`

    `b//(2x-1)/(3)-(5x+2)/(7)=x+13`

    `<=>(7(2x-1))/(21)-(3(5x+2))/(21)=(21(x+13))/(21)`

    `=>7(2x-1)-3(5x+2)=21(x+13)`

    `<=>14x-7-15x-6=21x+273`

    `<=>14x-15x-21x=7+6+273`

    `<=>-22x=286`

    `<=>x=-13`

    $\text{Vậy}$ `S={-13}`

    `c//(x-1)/(x+2)-(x)/(x-2)=(7x-6)/(4-x^{2})` `(ĐKXĐ:x\ne±2)`

    `<=>((x-1)(x-2))/((x+2)(x-2))-(x(x+2))/((x-2)(x+2))=-(7x-6)/((x-2)(x+2))`

    `⇒(x-1)(x-2)-x(x+2)=-(7x-6)`

    `<=>x^{2}-3x+2-x^{2}-2x+7x-6=0`

    `<=>2x-4=0`

    `<=>2x=4`

    `<=>x=2`

    $\text{Vậy}$ `S={2}`

    `d//(x+1)/(2021)+(x+2)/(2020)+(x+3)/(2019)+(x+4)/(2018)=-4`

    `<=>((x+1)/(2021)+1)+((x+2)/(2020)+1)+((x+3)/(2019)+1)+((x+4)/(2018)+1)=0`

    `<=>((x+1)/(2021)+(2021)/(2021))+((x+2)/(2020)+(2020)/(2020))+((x+3)/(2019)+(2019)/(2019))+((x+4)/(2018)+(2018)/(2018))=0`

    `<=>(x+1+2021)/(2021)+(x+2+2020)/(2020)+(x+3+2019)/(2019)+(x+4+2018)/(2018)=0`

    `<=>(x+2022)/(2021)+(x+2022)/(2020)+(x+2022)/(2019)+(x+2020)/(2018)=0`

    `<=>(x+2022)((1)/(2021)+(1)/(2020)+(1)/(2019)+(1)/(2018))=0`

    `<=>x+2022=0` $\text{. Do}$ `(1)/(2021)+(1)/(2020)+(1)/(2019)+(1)/(2018)\ne0`

    `<=>x=-2022`

    $\text{Vậy}$ `S={-2022}`

    Bình luận

Viết một bình luận