Giúp em với em cảm ơn trước ạ Cho A=1/1+3 +1/1+3+5 +1/1+3+5+7 +…+ 1/1+3+5+…+2017 CM A<3/4 11/08/2021 Bởi Parker Giúp em với em cảm ơn trước ạ Cho A=1/1+3 +1/1+3+5 +1/1+3+5+7 +…+ 1/1+3+5+…+2017 CM A<3/4
`A=1/{1+3} +1/{1+3+5} +1/{1+3+5+7} +…+ 1/{1+3+5+…+2017}` `A=1/2^2 +1/3^2 +1/4^2 +…+ 1/1009^2` `2A = 2/2^2 +2/3^2 +2/4^2 +…+ 2/1009^2` Ta có : `(x-1)(x+1) = (x-1)x+x-1 = x^2-x+x-1 = x^2-1` `⇒ 2A < 2/{1×3} +2/{3×5} +2/{5×7} +…+ 2/{1008×1010}` `⇒ 2A < 1-1/3+1/3-1/5+1/5-1/7 + … + 1/1008 – 1/1010` `⇒ 2A < 1 – 1/1010` `⇒ 2A < 2009/2010<1<3/2` `⇒ 2A < 3/4` `⇒ ĐPCM` Xin hay nhất ! Bình luận
Đáp án: $\text{Chúc bạn học tốt}$ Giải thích các bước giải: $A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+\dfrac{1}{1+3+5+7}+..+\dfrac{1}{1+3+5+..+2017}$ $A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+…+\dfrac{1}{1018081}$ hay $A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..+\dfrac{1}{1009^2}$ Mà $A<\dfrac{1}{4}+\dfrac{1}{2×3}+\dfrac{1}{3×4}+..+\dfrac{1}{1008×1009}$ $ADCT:\dfrac{k}{n(n+k)}=\dfrac{1}{n}-\dfrac{1}{n+k}$ $⇒A<\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{1008}-\dfrac{1}{1009}$ $⇒A<\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{1009}$ $⇒A<\dfrac{3}{4}-\dfrac{1}{1009}$ Vì $\dfrac{3}{4}-\dfrac{1}{1009}<\dfrac{3}{4}$ $⇒A<\dfrac{3}{4}$ Vậy đpcm Bình luận
`A=1/{1+3} +1/{1+3+5} +1/{1+3+5+7} +…+ 1/{1+3+5+…+2017}`
`A=1/2^2 +1/3^2 +1/4^2 +…+ 1/1009^2`
`2A = 2/2^2 +2/3^2 +2/4^2 +…+ 2/1009^2`
Ta có :
`(x-1)(x+1) = (x-1)x+x-1 = x^2-x+x-1 = x^2-1`
`⇒ 2A < 2/{1×3} +2/{3×5} +2/{5×7} +…+ 2/{1008×1010}`
`⇒ 2A < 1-1/3+1/3-1/5+1/5-1/7 + … + 1/1008 – 1/1010`
`⇒ 2A < 1 – 1/1010`
`⇒ 2A < 2009/2010<1<3/2`
`⇒ 2A < 3/4`
`⇒ ĐPCM`
Xin hay nhất !
Đáp án:
$\text{Chúc bạn học tốt}$
Giải thích các bước giải:
$A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+\dfrac{1}{1+3+5+7}+..+\dfrac{1}{1+3+5+..+2017}$
$A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+…+\dfrac{1}{1018081}$
hay $A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..+\dfrac{1}{1009^2}$
Mà $A<\dfrac{1}{4}+\dfrac{1}{2×3}+\dfrac{1}{3×4}+..+\dfrac{1}{1008×1009}$
$ADCT:\dfrac{k}{n(n+k)}=\dfrac{1}{n}-\dfrac{1}{n+k}$
$⇒A<\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{1008}-\dfrac{1}{1009}$
$⇒A<\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{1009}$
$⇒A<\dfrac{3}{4}-\dfrac{1}{1009}$
Vì $\dfrac{3}{4}-\dfrac{1}{1009}<\dfrac{3}{4}$
$⇒A<\dfrac{3}{4}$
Vậy đpcm